Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T19:39:30.096Z Has data issue: false hasContentIssue false

Morphological and Spectroscopic Studies of Chitin Nanowhiskers

Published online by Cambridge University Press:  14 April 2016

Violeta Campos-Cornelio
Affiliation:
Institutional Master in Biological Sciences, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58030, México
Nelly Flores-Ramírez
Affiliation:
Department of Wood Engineering and Technology, UMSNH, Morelia 58030, México
Salomón R. Vasquez-García
Affiliation:
Department of Chemical Engineering, UMSNH, Morelia 58030, México
Lada Domratcheva-Lvova
Affiliation:
Department of Wood Engineering and Technology, UMSNH, Morelia 58030, México
Leandro García-González
Affiliation:
Research Center for Micro and Nanotechnology, Universidad Veracruzana, Boca del Rio, Veracruz, 94292, México
Get access

Abstract

Chitin nanowhiskers were obtained with the purpose to be used as astaxanthin protectors against the photo and thermal degradation. These nanostructures were generated by a freezing/thawing procedure using two stirring methods: mechanical and sonication, which were named as FTM and FTS respectively. Morphological and spectroscopic studies were carried out on chitin nanowhiskers by scanning electronic microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Through a SEM analysis, chitin fibers were found uniformly spaced and oriented with the width ranged from of 20-40 nm. Furthermore, the nanowhiskers obtained by FTM showed long and flattened structures and bundles of homogeneous sizes, which have the capacity of being sites of stress concentration. In contrast, by FTS, the nanowhiskers showed coarse fibers exhibiting numerous peaks. By comparing the two methods is appreciated that FTS method provides more surface area, giving more sites for functionalization. Fourier transform infrared spectroscopy (FTIR) allowed the determination of free movement of functional groups on the surface of samples obtained by FTM and FTS methods. Significant differences of signals in the spectra indicate that there were more unassociated amides in the nanowhiskers obtained by FTS than by FTM.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cardenas, G., Cabrera, G., Taboada, E., Miranda, S. P., J. Appl. Polym. Sci. 93, 1876 (2004).10.1002/app.20647CrossRefGoogle Scholar
Kurita, K., Tomita, K., Tada, T., Ishii, S., Nishimura, SI., Shimoda, K., J. of Polym. Chem. 31, 485 (1993).10.1002/pola.1993.080310220CrossRefGoogle Scholar
Revol, J. F., Marchessault, R. H., Int. J Biol. Macromol. 15, 329 (1993).10.1016/0141-8130(93)90049-RCrossRefGoogle Scholar
Visakh, P. M., Thomas, S., Waste and Biomass Valorisation, 1, 121 (2010).10.1007/s12649-010-9009-7CrossRefGoogle Scholar
Chang, C., Chen, S., Zhang, L., J. Mater. Chem. 21, 3865 (2011).10.1039/c0jm03075aCrossRefGoogle Scholar
Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H., Yano, H., Biomacromolecules 10, 1584 (2009).10.1021/bm900163dCrossRefGoogle Scholar
Ngah, WSW., Teong, L.C., Hanafiah, M., Carbohydr Polym. 83, 1446 (2011).10.1016/j.carbpol.2010.11.004CrossRefGoogle Scholar
Christophersen, A. G., Jun, H., Jorgensen, K., Skibsted, L. H., Zeitschrift fur Lebensmittel-Untersuchung und –Forschung, 192, 433 (1991).10.1007/BF01193143CrossRefGoogle Scholar
Nielsen, B. R., Mortensen, A., Jorgensen, K., Skibsted, L. H., J. Agric. Food Chem. 44, 2106 (1996).10.1021/jf9508007CrossRefGoogle Scholar
Zhao, L., Zhao, G., Chen, F., Wang, Z., Wu, J., Hu, X., J. Agri. Food Chem. 54, 8346 (2006).10.1021/jf061876dCrossRefGoogle Scholar
Fang, Yan, Duan, Bo, Lu, Ang, Liu, Maili, Liu, Huili, Xu, Xiaojuan, and Zhang, Lina, Biomacromolecules, 16, 1410 (2015).10.1021/acs.biomac.5b00195CrossRefGoogle Scholar
Lu, Y., Weng, L. and Zhang, L.. Biomacromolecules 5, 1046 (2004).10.1021/bm034516xCrossRefGoogle Scholar
Campana-Filho, S. P., De Britto, D.., Curti, E., Abreu, F. R., Cardoso, M. B., Battisti, M. V., Sim, P. C., Goy, R. C., Signini, R., R. L. Quimica Nova. 30, 644 (2007).10.1590/S0100-40422007000300026CrossRefGoogle Scholar
Socrates, George. Infrared and Raman Characteristic Group Frequencies: Tables and Charts 3rd Edition. John Wiley & Sons. (2004)Google Scholar
Smith, Brian C.. Infrared Spectral Interpretation: A Systematic Approach 1st Edition. John Wiley & Sons. (2011).Google Scholar
Fan, Y., Saito, T. and Isogai, A.. Biomacromolecules. 9, 192 (2008)10.1021/bm700966gCrossRefGoogle Scholar