Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T17:09:31.718Z Has data issue: false hasContentIssue false

Monte Carlo Simulations of Growth Kinetics and Phase Transitions at Interfaces: Some Recent Results

Published online by Cambridge University Press:  21 February 2011

P. Nielaba
Affiliation:
Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudingerweg 7, D-6500 Mainz, FRG
K. Binder
Affiliation:
Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudingerweg 7, D-6500 Mainz, FRG
Get access

Abstract

In the first part Monte Carlo studies of the kinetics of multilayer adsorption (without screening) are described. The approach to the jamming coverage in each layer is asymptotically exponential. The jamming coverages approach the infinite-layer limit value according to a power law. In the second part, studies of phase transitions in two dimensional fluids are reviewed. With a combination of Monte Carlo and finite size scaling block analysis techniques, accurate values are obtained for the critical temperatures, coexistence densities and the compressibilities of an adsorbed fluid layer in an NVT ensemble.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Binder, K. and Landau, D.P., in Molecule- Surface Interactions (Advances in Chemical Physics LXI), edited by Lawley, K.P. (Wiley, New York, 1989) p. 91.Google Scholar
[2] Mouritsen, O.G., in Kinetics of Ordering and Growth at Surfaces, edited by Lagally, M.G. (Plenum, New York 1990) p.1;Google Scholar
Binder, K., in Kinetics of Ordering and Growth at Surfaces, edited by Lagally, M.G. (Plenum, New York 1990), p. 31.Google Scholar
[3] Gonzalez, J.J., Hemmer, P.C. and Høye, J.S., Chem. Phys. 3, 228 (1974);Google Scholar
Feder, J., J. Theor. Biology 87, 237 (1980);Google Scholar
Nakamura, M., Phys. Rev. A 36, 2384 (1987);Google Scholar
Vigil, R.D. and Ziff, R.M., J. Chem. Phys. 91, 2599 (1989);Google Scholar
Binder, K. and Heermann, D.W., in Scaling Phenomena in Disordered Systems, edited by Pynn, R. and Skjeltorp, A. (Plenum, New York 1985), p. 207, and refern ces therein.Google Scholar
[4] Haque, M.F., Kallay, N., Privman, V. and Matijević, E., J. Adhesion Sci. Technol. 4, 205 (1990);Google Scholar
Privman, V., Kallay, N., Haque, M.F. and Matijević, E., J. Adhesion Sci. Technol. 4, 221 (1990).Google Scholar
[5] Bartelt, M. and Privman, V., J. Chem. Phys. 93, 6820 (1990).Google Scholar
[6] Nielaba, P., Privman, V. and Wang, J.S., J. Phys. A 23, L1178 (1991);Google Scholar
Privman, V., Wang, J.S. and Nielaba, P., Phys. Rev. B 43, 3366 (1991).Google Scholar
[7] Family, F. and Vicsek, T., J. Phys. A 18, L75 (1985), and references therein.Google Scholar
[8] Meakin, P. and Family, F., Phys. Rev. A 34, 2558 (1986), and references therein.Google Scholar
[9] Panagiatopoulos, A.Z., Mol. Phys. 61, 813 (1987);Google Scholar
Smit, B., de Smedt, Ph., and Frenkel, D., Mol. Phys. 68, 931 (1989);Google Scholar
Smit, B. and Frenkel, D., Mol. Phys. 68, 951 (1989).Google Scholar
[10] Rovere, M., Heermann, D.W. and Binder, K., Europhys. Lett. 6, 585 (1988); J. Phys. C: Condensed Matter 2, 7009 (1990).Google Scholar
[11] Binder, K., Z. Physik B 43, 119 (1981).Google Scholar
[12] Rovere, M., Nielaba, P. and Binder, K., preprint.Google Scholar
[13] Marx, D., Nielaba, P., Binder, K., Phys. Rev. Lett. 67, 3124 (1991).Google Scholar