Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:26:14.278Z Has data issue: false hasContentIssue false

Monte Carlo Based Calculation of Transport Parameters for Wide Band Gap Device Simulation

Published online by Cambridge University Press:  15 March 2011

E. Bellotti
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332
M. Farahmand
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332
H.-E Nilsson
Affiliation:
Department of Information Technology, Mid-Sweden University, Sundsvall, Sweden
K. F. Brennan
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332, [email protected]
P. P. Ruden
Affiliation:
Dept. of ECE, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

We present Monte Carlo based calculations of transport parameters useful in the simulation of III-nitride and SiC based devices. The calculations are performed using a full band ensemble Monte Carlo model that includes numerical formulations of the phonon scattering rates and impact ionization transition rates. Calculations are made for the wurtzite and zincblende phases of GaN, the wurtzite phase of InN, and the 3C (cubic) and 4H phases of SiC. The basic transport parameters determined are saturation drift velocity, and the ionization coefficients as a function of applied electric field. Results from the various materials are finally compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Weitzel, C., Pond, L., Moore, K., and Bhatnagar, M., Proc. Int. Conf. on Silicon Carbide, III-Nitrides and Related Materials, Aug 31- Sept. 5, 1997, Stockholm, Sweden.Google Scholar
2 Shenai, K., Scott, R. S., and Baliga, B. J., IEEE Trans. Electron Dev. 36, 1811 (1989).Google Scholar
3 Brennan, K. F., Bellotti, E., Farahmand, M., Haralson, J. II, Ruden, P. P., Albrecht, J. D., and Sutandi, A., Solid State Electron., 44, 195 (2000).Google Scholar
4 Lambrecht, W. R. L. and Segall, B., Properties of the Group III Nitrides, edited by Edgar, J. E. (INSPEC, IEE, London, 1994).Google Scholar
5 Bellotti, E., Ph.D. Thesis, Georgia Tech, Atlanta, GA (1999).Google Scholar
6 Kolnik, J., Oguzman, I. H., Brennan, K. F., Wang, R., and Ruden, P. P., J. Appl. Phys., 78, 1033 (1995).Google Scholar
7 Bellotti, E., Nilsson, H.-E., Brennan, K. F., and Ruden, P. P., J. Appl. Phys., 85, 3211 (1999).Google Scholar
8 Bellotti, E., Nilsson, H.-E., Brennan, K. F., Ruden, P. P. and Trew, R., J. Appl. Phys., 87, 3864 (2000).Google Scholar
9 Bellotti, E., Brennan, K. F., Wang, R., and Ruden, P. P., J. Appl. Phys., 82, 2961 (1997).Google Scholar
10 Ruden, P. P., Bellotti, E., Nilsson, H.-E., and Brennan, K. F., unpublished.Google Scholar
11 Farahmand, M. and Brennan, K. F., IEEE Trans. Electron Dev., 47, 493 (2000).Google Scholar
12 Bellotti, E., Doshi, B. K., Brennan, K. F., Albrecht, J. D., and Ruden, P. P., J. Appl. Phys., 85, 916 (1999).Google Scholar
13 Bellotti, E., Oguzman, I., Brennan, K., Kolnik, J., Wang, R., Ruden, P., Proceedings of the Material Research Society, Spring 1997, San Francisco, March 31 - April 4, 1997.Google Scholar