Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:41:21.914Z Has data issue: false hasContentIssue false

Monte Carlo and Molecular Dynamics Simulations of Liquid Semiconductor Surfaces

Published online by Cambridge University Press:  10 February 2011

Zhiqiang Wang
Affiliation:
Lucent Technologies, Murray Hill, NJ 07974, email [email protected]
Wenbin Yu
Affiliation:
Alaris Medical Systems, San Diego, CA 92121
David Stroud
Affiliation:
Department of Physics, Ohio State University, Columbus, OH 43210
Get access

Abstract

We have numerically studied the surface tension and surface profiles of several liquid semiconductors, including Si, Ge, GaAs, CdTe, and their alloys, as a function of temperature and concentration. Two kinds of simulations have been carried out: direct free-energy calculations using Monte Carlo methods, and force summations using molecular dynamics. We use empirical two- and three-body interatomic interactions based on the form originally proposed by Stillinger and Weber for Si, in conjunction with simulation cell sizes ranging from 216 to as large as 8000 atoms and several novel numerical techniques including a direct calculation of the surface entropy. In the case of alloys, we find a striking segregation of the low-surface-tension component to the surface even when the alloy components are miscible at all concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pavlov, P. V. and Dobrokhotov, E. V., Sov. Phys. Solid State 12, 225 (1970) [Fizika Tverdogo Tela 12, 281 (1970)].Google Scholar
2. Shvarev, K. M., Baum, B. A. and Gel'd, P. V., Sov. Phys. Solid State 16, 2111 (1975) [Fiz. Tverd. Tela 16, 3246 (1974)].Google Scholar
3. Waseda, Y. and Suzuki, K., Z. Phys. B 20, 339 (1975).Google Scholar
4. Gabathuler, J. P. and Steeb, S., Z. Naturforsch. 34a, 1314 (1979).Google Scholar
5. Hague, C. F., Sénémaud, C. and Ostrowiecki, H., J. Phys. F: Met. Phys. 10, L267 (1980).Google Scholar
6. Hardy, S., J. Cryst. Growth (Netherlands) 69, 456 (1984).Google Scholar
7. Sasaki, H., Tokizaki, E., Terashima, K. and Kimura, S., J. Crystal Growth 139, 225 (1994).Google Scholar
8. See, for example, the articles in Materials Processing in the Reduced Gravity of Space, ed. Rindone, G. (North-Holland, Amsterdam, 1982).Google Scholar
9. Ashcroft, N. W. and Stroud, D., Solid State Physics 33, p. 1 (1978).Google Scholar
10. See, for example, Harris, J. G., Gryko, J., and Rice, S. A., J. Chem. Phys. 87, 3069 (1987); M. Zhao, D. S. Chekmarev, Z.-H. Cai, and S. A. Rice, preprint; and S. A. Rice, these proceedings.Google Scholar
11. Ferrenberg, A. M. and Swendsen, R. H., Phys. Rev. Lett. 61 2635 (1988).Google Scholar
12. Miyazaki, J., Barker, J.A., and Pound, G. M., J. Chem. Phys. 64, 3364 (1976).Google Scholar
13. Wang, Z. Q. and Stroud, D., Phys. Rev. A41, 4582 (1990).Google Scholar
14. For a recent calculation and references, see Kulkarni, R., Aulbur, W. G., and Stroud, D., Phys. Rev. B 55, 6896 (1997).Google Scholar
15. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
16. Wang, Z. Q. and Stroud, D., Phys. Rev. B38, 1384 (1988).Google Scholar
17. Wang, Z. Q., Stroud, D., and Markworth, A. J., Phys. Rev. B40, 3129 (1989).Google Scholar
18. McSkimin, H. J. and Thomas, D. G., J. Appl. Phys. 33, p. 56 (1962).Google Scholar
19. Lind, M. D., Hendrick, J. J., and Martin, M. J., in Low Gravity Sciences, Vol. 67 of Science and Technology Series, ed. Koster, J. N. (Univelt, San Diego, CA), pp. 149163.Google Scholar
20. Dashevskii, M. Ya., Kukuladze, G.V., Lazarev, V.B., and Mirgalovskii, M.S., Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 3, 1561 (1967).Google Scholar
21. Yu, W. K., Wang, Z. Q., and Stroud, D., Phys. Rev. B54, p. 13946 (1996).Google Scholar
22. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
23. Lee, J. K., Barker, J. A., and Pound, G. M., J. Chem. Phys. 60, 1976 (1974).Google Scholar
24. Yu, Wenbin and Stroud, D., Phys. Rev. B56, 12243 (1997).Google Scholar
25. Wang, Z. Q. and Stroud, D., Scripta Met. et Mater. 32, 87 (1994).Google Scholar