Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:35:30.997Z Has data issue: false hasContentIssue false

Monopolar Spin Orientation and Determination of Spin Relaxation Times in Quantum Well Structures

Published online by Cambridge University Press:  17 March 2011

Sergey D. Ganichev
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany A. F. Ioffe Physicotechnical Institute, 194021 St. Petersburg, Russia
Sergey N. Danilov
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Martin Sollinger
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Dieter Weiss
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Werner Wegscheider
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Wilhelm Prettl
Affiliation:
Fakultäat für Physik, Universitäat Regensburg, 93040 Regensburg, Germany
Vasily V. Bel'kov
Affiliation:
A. F. Ioffe Physicotechnical Institute, 194021 St. Petersburg, Russia
Eugenius L. Ivchenko
Affiliation:
A. F. Ioffe Physicotechnical Institute, 194021 St. Petersburg, Russia
Get access

Abstract

It is shown that monopolar optical spin orientation of free carriers in zinc-blende structure based quantum wells (QWs) causes an electric current which reverses its direction upon changing the helicity of the radiation from left to right circular polarization resulting in a circular photogalvanic effect. The monopolar non-equilibrium population of spin-up and spin-down states has been achieved by far-infrared optical excitation ofp- andn-type GaAs/AlGaAs QWs structures. Two methods are introduced allowing to determine spin relaxation times. One is based on the Hanle effect in magnetic field induced circular photogalvanic effect, the other is spin sensitive bleaching of absorption. In contrast to usually applied methods of optical spin orientation, in the present case of terahertz excitation only one kind of charge carriers is involved in spin orientation and relaxation processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., Molnar, S.von, Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M., Science 294, 1488 (2001).Google Scholar
2. Damen, T.C., Vina, L., Cunningham, J.E., Shah, J., and Sham, L.J., Phys. Rev. Lett. 67, 3432 (1991).Google Scholar
3. Sham, L.J., J. Phys.: Condens. Matter 5, A51 (1993).Google Scholar
4. Fabian, J., and Sarma, S. Das, J. Vac. Sci. Technol. B 17, 1708 (1999).Google Scholar
5. Ganichev, S. D., Danilov, S. N., Eroms, J., Wegscheider, W., Weiss, D., Prettl, W., and Ivchenko, E. L., Phys. Rev. Lett. 86, 4358 (2001).Google Scholar
6. Ganichev, S. D., Physica B 273–274, 737 (1999).Google Scholar
7. Hanle, W., Ztschr. Phys. 30, 93 (1924).Google Scholar
8. Optical orientation, ed. Meier, F., and Zakharchenya, B. P., (Elsevier, 1984).Google Scholar
9. Ganichev, S. D., Bel'kov, V.V., Eroms, J., Ivchenko, E. L., Tarasenko, S.A., Sollinger, M., Kalz, F.-P., Weiss, D., and Prettl, W., Proc. 9th Int. Symp. Nanostructures: Physics and Technology. St.Petersburg, Russia, p.252 (2001).Google Scholar
10. Ivchenko, E.L., Lyanda-Geller, Yu., and Pikus, G.E., JETP Lett. 50, 175 (1989)]; Sov. Phys. JETP 71, 550 (1990)].Google Scholar
11. Ivchenko, E.L., Kiselev, A.A., and Willander, M., Sol. State Commun. 102, 375 (1997).Google Scholar
12. Marie, X., Amand, T., Jeune, P. Le, Paillard, M., Renucci, P., Golub, L.E., Dymnikov, V.D., and Ivchenko, E.L., Phys. Rev. 60, 5811 (1999).Google Scholar
13. Beregulin, E. V., Ganichev, S. D., Glukh, K. Yu., and Yaroshetskiῐ, I. D., Sov. Phys. Semicond. 21, 615 (1987)Google Scholar
14. Helm, M., Fromherz, T., Murdin, B. N., Pidgeon, C. R., Geerinck, K. K., Hovenyer, N. J., Wenckebach, W. Th., Meer, A. F. G. van der, and Amersfoort, P. W. van, Appl. Phys. Lett. 63, 3315 (1993)Google Scholar
15. Li, W. J., McCombe, B. D., Kaminski, J. P., Allen, S. J., Stockman, M. I., Muratov, L. S., Pandey, L. N., George, T. F., and Schaff, W. J., Semicond. Sci. Technol. 9, 630 (1994)Google Scholar
16. Ferreira, R., and Bastard, G., Phys. Rev. B. 43, 9687 (1991).Google Scholar
17. Ganichev, S. D., Ketterl, H., Prettl, W., Ivchenko, E. L., and Vorobjev, L. E., Appl. Phys. Lett. 77, 3146 (2000); S. D. Ganichev, E. L. Ivchenko, and W. Prettl, Physica E (in press).Google Scholar
18. Note, that to obtain the LPGE linearly polarized radiation with the electric field vector E oriented at 45 degrees to the direction x was used.Google Scholar
19. Vorobjev, L.E., Donetskii, D.V., and Golub, L.E., JETP Lett. 63, 981 (1996)Google Scholar
20. Bastard, G., and Ferreira, R., Europhys. Lett. 23, 439 (1993).Google Scholar