Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T21:45:02.046Z Has data issue: false hasContentIssue false

Monolithically Integrated Dual-Band Quantum Well Infrared Photodetector

Published online by Cambridge University Press:  10 February 2011

D. K. Sengupta
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
S. D. Gunapala
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
S. V. Bandara
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
F. Pool
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
J. K. Liu
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
M. McKelvey
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
E. Luong
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
J. Torezan
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
J. Mumulo
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
W. Hong
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
J. Gill
Affiliation:
Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
G. E. Stillman
Affiliation:
Microelectronics Laboratory, Department of Electrical Engineering, Department of Physics & Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
A. P. Curtis
Affiliation:
Microelectronics Laboratory, Department of Electrical Engineering, Department of Physics & Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
S. Kim
Affiliation:
Microelectronics Laboratory, Department of Electrical Engineering, Department of Physics & Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
L. J. Chou
Affiliation:
Microelectronics Laboratory, Department of Electrical Engineering, Department of Physics & Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
P. J. Mares
Affiliation:
Microelectronics Laboratory, Department of Electrical Engineering, Department of Physics & Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
M. Feng
Affiliation:
Microelectronics Laboratory, Department of Electrical Engineering, Department of Physics & Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
K. C. Hseih
Affiliation:
Microelectronics Laboratory, Department of Electrical Engineering, Department of Physics & Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
S. L. Chuang
Affiliation:
Microelectronics Laboratory, Department of Electrical Engineering, Department of Physics & Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
S. G. Bishop
Affiliation:
Microelectronics Laboratory, Department of Electrical Engineering, Department of Physics & Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Y. C. Chang
Affiliation:
Microelectronics Laboratory, Department of Electrical Engineering, Department of Physics & Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
H. C. Liu
Affiliation:
Institute of Microstructural Sciences, National Research Council, Canada KIA 0R6
W. I. Wang
Affiliation:
Department of Electrical Engineering, Columbia University, New York, NY 11007
Get access

Abstract

A monolithic quantum well infrared photodetector (QWIP) structure has been presented that is suitable for dual bands in the two atmospheric transmission windows of 3 – 5.3 μm and 7.5 – 14μm, respectively. The proposed structure employs dual stacked, strain InGaAs/AlGaAs and latticematched GaAs/AlGaAs quantum well infrared photodetector for mid wavelength and long wavelength detection. The response peak of the strain InGaAs/AlGaAs quantum well is at 4.9 μm and the lattice-matched GaAs/AlGaAs is at 10.5μm; their peak sensitivities are in the spectral regions of 3 – 5.3mu;m and 7.5 – 14μm. The peak responsivity when the dual-band QWIP is biased at 5 Volts is ∼0.065A/W at 4.9μm and ∼0.006A/W at 10.5μm; at this voltage the dual-band QWIP is more sensitive at the shorter wavelengths due to its larger impedance thus exhibiting wavelength tunability characteristics with bias. Additionally, single colored 4.9 and 10.5μm QWIPs were fabricated from the dual-band QWIP structure to study the bias-dependent behavior and also to understand the effects of growing the strain layer InGaAs/AlGaAs QWIP on top of the lattice-matched GaAs/AlGaAs QWIP. In summary, two stack dual-band QWIPs using GaAs/AlGaAs and strained InGaAs/AlGaAs multiquantum wells have been demonstrated with peak spectral sensitivities in the spectral region of 3 – 5.3μm and 7.5 – 14μm. Also, the voltage tunable dual-band detection have been realized for this kind of QWIP structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Konuma, K., Asano, Y, Masubuchi, K., Utsumi, H., Tohyama, S., Endo, T., Azuma, H., and Teranishi, N., IEEE Trans. Electron Devices, 43, 282 (1996).Google Scholar
2. Blazejewski, E.R., Arias, J.M., Williams, G.M., Mclevige, W., Zandian, M., and Pasko, J., J. Vac. Sci, Technol, B, 10, 1626 (1992).Google Scholar
3. Reine, M.B., Norton, P.W., Starr, R., Weiler, M.H., Kestigian, M., Musicant, B.L., Mitra, P., Schimert, T., Case, F.C., Bhat, I.B., Ehsani, H., and Rao, V., J. Electron. Mater, 24, 669 (1995).Google Scholar
4. Levine, B.F., J. Appl. Phys. 74, R1 (1993).Google Scholar
5. Zussman, A., Levine, B.F., Kuo, J.M., and de Jong, J., J. Appl. Phys. 70, 5101 (1991).Google Scholar
6. Sarusi, G., Levine, B.F., Pearton, S.J., Bandara, S.V., and Leibenguth, R.E. J. Appl. Phys. 64, 960 (1994).Google Scholar
7. Gunapala, S.D., Levine, B.F., Ritter, D., Hamn, R.A., and Panish, M.B., Appl. Phys. Lett. 58, 2024 (1991).Google Scholar
8. Sengupta, D.K., Jackson, S.L., Ahmari, D., Kuo, H.C., Malin, J.I., Thomas, S., Feng, M., and Stillman, G.E., Appl. Phys. Lett. 69, 3209 (1996).Google Scholar
9. Hiromitou, A., and Yuich, K., Appl. Phys. Lett. 56, 746 (1990).Google Scholar
10. Tidrow, M.Z., and Bacher, K., Appl. Phys. Lett. 70, 859 (1997).Google Scholar
11. Tsai, K.L., Chang, K.H., Lee, C.P., Huang, K.F., Tsang, J.S., and Chen, H.R., Appl. Phys. Lett. 62, 3504 (1993).Google Scholar
12. Grave, I., Shakouri, A., Kuze, N., and Yariv, A., Appl. Phys. Lett. 60, 2362 (1992).Google Scholar
13. Kock, A., Gornick, E., Abstreiter, G., Bohm, G., Walker, M., and Weimaun, G., Appl. Phys. Lett. 60, 2011 (1992).Google Scholar
14. Kheng, K., Ramsteiner, M., Schneider, H., Ralston, J.D., Fuchs, F., and Koidl, P., Appl. Phys. Lett. 61 666 (1992).Google Scholar
15. Wang, Y.H., Li, S.S., and Ho, P., Appl. Phys. Lett. 62, 93 (1993).Google Scholar
16. Martinet, E., Rosencher, E., Luc, F., Bois, Ph., Constard, E., and Delaitre, S., Appl. Phys. Lett. 61, 246 (1992).Google Scholar
17. Zhang, Y., Jiang, D.S., Xia, J.B., Song, L.Q., Zhou, Z.Q., and Wu, W.K., Appl. Phys. Lett. 68, 2114 (1996).Google Scholar
18. Personal communication (W.I. Wang).Google Scholar
19. Tidrow, M.Z., Choi, K.K., DeAnni, A.J., Chang, W.H., and Svensson, S.P., Appl. Phys. Lett. 67, 1800 (1995).Google Scholar
20. Tidrow, M.Z., Chiang, J.C., li, S., Bacher, K., Appl. Phys. Lett. 70, 859 (1997).Google Scholar
21. Liu, H.C., Li, J., Thompson, J.R., Wasilewski, Z.R., Buchanan, M., and Simmons, J.G., IEEE Electron Device Letters, 14, 566 (1993).Google Scholar
22. Chuang, S.L., Physics of Optoelectronics Devices (New York: Wiley, 1995).Google Scholar
23. Liu, H.C., Wasilewski, Z R., Buchanan, M., and Chu, H., Appl. Phys. Lett. 63, 761 (1993).Google Scholar