Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:46:18.513Z Has data issue: false hasContentIssue false

Monolayers from Genetically Engineered Protein Pores

Published online by Cambridge University Press:  15 February 2011

Hagan Bayley*
Affiliation:
Worcester Foundation for Experimental Biology, 222 Maple Avenue, Shrewsbury, MA 01545
Get access

Abstract

A selection of microscopic pores is being made by genetic manipulation of a bacterial channel protein, α-hemolysin (α-HL). It will include: pores with different internal diameters, with differential selectivity for the passage of classes of molecules, and with different gating properties. The pores will be made into monolayers and incorporated into materials such as thin films to confer novel permeability properties upon them. Such products will have several technological applications, for example as molecular filters in sensors or as components of optically gated devices in electronics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arbuthnott, J.P., Freer, J.H. and Bemheimer, A.W.. J. Bacterial. 94, 1170 (1967).CrossRefGoogle Scholar
2. Baldini, G., Martoglio, B., Schachenmann, A., Zugliani, C. and Brunner, J., Biochemistry 27, 7951 (1988).Google Scholar
3. Bayley, H., Gasparro, F. and Edelson, R., Trends in Pharm. Sci. 8, 138 (1987).Google Scholar
4. Belmonte, G., Cescatti, L., Ferrari, B., Nicolussi, T., Ropele, M. and Menestrina, G., Eur. Biophys. J. 14,349 (1987).Google Scholar
5. Bhakdi, S. and Tranum-Jensen, J., Trends Biochem. Sci. 8. 134 (1983).Google Scholar
6. Bhakdi, S., Füssle, R. and Tranum-Jensen, J., Proc. Nati. Acad. Sci. USA 78, 5475 (1981).Google Scholar
7. Blachly-Dyson, E., Peng, S., Columbini, M. and Forte, M., Science 247, 1233 (1990).Google Scholar
8. Carter, F.L., ed., Molecular Electronic Devices, Marcel Dekker (1982)Google Scholar
9. Carter, F.L., ed., Molecular Electronic Devices II, Marcel Dekker (1987)Google Scholar
10. Darst, S.A., Kubalek, E.W., and Kornberg, R.D., Nature 340,730 (1988).Google Scholar
11. Dobson, C.M., Nature 348. 198 (1990).CrossRefGoogle Scholar
12. Douglas, K., Clark, N.A. and Rothschild, K.J., Appl. Phys. Left. 48, 676 (1986).Google Scholar
13. Douglas, K., Clark, N.A. and Rothschild, K.J., Appl. Phys. Lett. 56,692 (1990).Google Scholar
14. Freer, J.H., Arbuthnott, J.P., and Bernheimer, A.W., J. Bacterial. 95, 1153 (1968).Google Scholar
15. Füissle, R.. Bhakdi, S., Szlegoleit, A., Tranum-Jensen, J., Kranz, T. and Wellensiek, H.-J., J. Cell Biol. 91, 83 (1981).CrossRefGoogle Scholar
16. Gray, G.S. and Kehoe, M., Infect. Immun. 46,615 (1984).CrossRefGoogle Scholar
17. Gurney, A.M. and Lester, H.A., Physiol. Rev. 67, 583 (1987).Google Scholar
18. Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E., and Downing, K.H., J. Mol. Biol. 213, 899(1990).Google Scholar
19. Huang, K.-S., Bayley, H., Liao, M.-J., London, E. and Khorana, H.G., J. Biol. Chem. 256,3802 (1981).CrossRefGoogle Scholar
20. Martinac, B., Adler, J. and Kung, C., Nature 348,261 (1990).Google Scholar
21. Menestrina, G., J. Membrane Biol. 90, 177 (1986).CrossRefGoogle Scholar
22. Miller, C., Neuron 2, 1195 (1989).Google Scholar
23. Noren, C.J., Anthony-Cahill, S.J., Griffth, M.C. and Schultz, P.G., Science 244, 182 (1989).Google Scholar
24. Oesterhelt, D. and Stoeckenius, W., Nature New Biol. 233, 149 (1971).Google Scholar
25. Oloffson, A.. Kaveus, U., Hacksell, I., Thelestamand, M. Hebert, H., J. Mol. Biol. 214,299 (1990).Google Scholar
26. Parker, M.W., Tucker, A.D., Tsernoglou, D. and Pattus, F., Trends in Biochem. Sci. 15, 126 (1990).CrossRefGoogle Scholar
27. Peterson, A., and Seed, B., Nature 329, 842 (1987).Google Scholar
28. Regen, S.L., Ann. N.Y. Acad. Sci. 446,296 (1985).Google Scholar
29. Rosenberg, A.H., Lade, B.N., Chui, D.-S., Lin, S.-W., Dunn, J.J. and Studier, F.W., Gene 56, 125 (1987).Google Scholar
30. Sleytr, U.B., Int. Rev. Cytol. 53, 1(1978).Google Scholar
31. Stinson, S.C., Chem. & Eng. News July 16th, pp 2632 (1990).CrossRefGoogle Scholar
32. Thelestam, M. and Blomqvist, L., Toxicon 26, 51 (1988).CrossRefGoogle Scholar
33. Tobkes, N., Wallace, B.A. and Bayley, H., Biochemistry 24, 1915 (1985).Google Scholar
34. Uzgiris, E.E. and Komberg, R.D., Nature 301, 125 (1983).Google Scholar
35. Wu, Z.-P. and Hilvert, D., J. Am. Chem. Soc. 112, 5647 (1990).Google Scholar
36. Yemul, S.S., Berger, C., Katz, M., Estabrook, A., Edelson, R., and Bayley, H., Cancer Immunol. Immunother. 30,317 (1990).Google Scholar
37. Zagotta, W.N., Hoshi, T. and Aldrich, R.W., Science 250, 568 (1990).Google Scholar