Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:32:25.522Z Has data issue: false hasContentIssue false

Monolayer Studies of Synthetic Poly (α-Amino Acids)

Published online by Cambridge University Press:  15 February 2011

Gerald D. Fasman*
Affiliation:
Brandeis University, Department of Biochemistry, Waltham, Massachusetts, 02254.
Get access

Abstract

Synthetic poly-α-amino acids spread at the air-water interface can form monomolecular films. These polymers may assume several conformations, namely the α-helix, β-pleated sheets or random coils. The stabilizing forces can be inter- or intramolecular and are mainly hydrogen bonding and hydrophobic interactions. The area/residue values for helical polymers differ significantly from those of β-sheets.

Poly-α-amino acids can form both cholesteric and nematic structures. Synthetic polypeptides of amphiphilic character, of both α and β conformers, can by synthesized and are very surface active. These polymers associate with cell membranes or lipoproteins. Many biologically active polypeptides, such as hormones, form amphiphilic α-helices and these ligands bind to receptor sites on cell surfaces.

These polypeptides offer a source of materials whose properties can be varied as desired, providing opportunities for rationale drug design.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Block, H., Polvy(γ-Benzyl-L-Glutamate) and Other Glutamic Acid Containing Polymers (Gordon & Breach Science Publishers, New York, 1983).Google Scholar
2. Katchalski, E., in Advances in Protein Chemistry, VI (Academic Press, New York, 1951), p. 123.Google Scholar
3. Leuchs, H. Ber. 39, 857 (1906).CrossRefGoogle Scholar
4. Fuller, W.D., Verlander, M.S., Goodman, M., Biopolymers 15, 1869 (1976).CrossRefGoogle Scholar
5. Katchalski, E., Grossfeld, I., Frankel, M., J. Amer. Chem. Soc. 70, 2094 (1948).Google Scholar
6. Frankel, M. and Katchalski, E., Scientific paper presented to Ch. Weizmann, Jerusalem (1944), p. 24.Google Scholar
7. Hanby, W.E., Wlaey, S.G., Watson, J., Nature M 61, 132 (1948).Google Scholar
8. Pauling, L. and Corey, R.B., Proc. Natl. Acad. Sci. USA 37, 235 (1951).Google Scholar
9. Greenfield, N.J. and Fasman, G.D., Biochemistry 8, 4108 (1969).CrossRefGoogle Scholar
10. Perutz, M.F., Nature 167, 1053 (1951).CrossRefGoogle Scholar
11. Elliot, A. and Ambrose, E.J., Disc. Faraday Soc. 9, 246 (1950).Google Scholar
12. Robinson, C., Trans. Faraday Soc. 52, 271 (1956).Google Scholar
13. Robinson, C., Ward, J.C., Beevers, R.B., Disc. Faraday Soc. 25, 29 (1958).Google Scholar
14. Robinson, C., Mol Cryst. 1, 367 (1966).Google Scholar
15. Luzzati, V., Cesari, M., Spach, G., Mason, F., Vincent, J.M., J. Mol. Biol. 3, 566 (1961).Google Scholar
16. Parry, D.A.D. and Elliot, A., J Mol Biol 25, 1 (1967).Google Scholar
17. Saeva, F.D. and Olin, G.R., J. Amer. Chem. Soc. 95, 7882 (1973).Google Scholar
18. Flory, P.J., Proc. Roy. Soc. London, Ser. A, 234, 7389 (1956).Google Scholar
19. Sobijama, S., J. Phys. Soc. Japan 23, 1070 (1967).Google Scholar
20. Friedman, E.M. and Roe, R.J., Mol. Cryst. Liq. Cryst. 28, 437 (1974).Google Scholar
21. Horton, J.C., Donald, A.M., A. Hill. Nature 346, 44 (1990).Google Scholar
22. Birdi, K.S. and Fasman, G.D., J. Polym. Sci. Al, 10, 2483 (1972).Google Scholar
23. Loeb, G.I., J. Coll. & Interface Sci. 26, 236 (1968).CrossRefGoogle Scholar
24. Davies, J.T. and Rideal, E.K., in Interfacial Phenomena (Academic Press, New York, 1967), p. 499.Google Scholar
25. Fasman, G.D., in Polv-α-Amino Acids, Vol. 1, edited by Fasman, G.D. (Marcel Dekker Inc., New York, 1967), p. 499.Google Scholar
26. Tooney, N.M. and Fasman, G.D., J. Mol. Biol. 36, 355 (1968).Google Scholar
27. Malcolm, B.R., Proc. Roy. Soc. London, Ser A, 305 363 (1968).Google Scholar
28. Malcolm, B.R., Biochem. J. 110, 733 (1968).CrossRefGoogle Scholar
29. Gabrielli, G. and Puggeli, M., Adv. Chem. Sci. 144, 347 (1975).Google Scholar
30. Baier, R.E. and Zisman, W.A., Macromolecules 3, 70 (1970).Google Scholar
31. Samulski, E.T. and Tobolsky, T.V., Biopolymers 10, 1013 (1971).CrossRefGoogle Scholar
32. Kaiser, E.T. and Kézdy, F.J., Science 233, 249 (1984).Google Scholar
33. Lau, S.H., Rivier, J., Vale, W., Kaiser, E.T., Kézdy, F.J., Proc. Natl. Acad. Sci. USA 80, 7070 (1983).CrossRefGoogle Scholar

General References

1. Banford, C.H., Elliot, A., Hanby, W.E., Synthetic Polvoentides: Preparation. Structure and Prooerties (Academic Press, New York, 1956).Google Scholar
2. Katchalski, E., in Advances in Protein Chemistry, VI, edited by Anson, M., Edsall, J.T., Bailey, K. (Academic Press, New York, 1951).Google Scholar
3. Katchalski, E. and Sela, M., Advances in Protein Chemistry 13, 243 (1958).Google Scholar
4. Stahlman, M.A., editor, Polv-amino Acids. PolvDeotides and Proteins (University of Wisconsin Press, Madison, 1962).Google Scholar
5. Sela, M. and Katchalski, E., Advances in Protein Chemistry 14, 391 (1959).CrossRefGoogle Scholar
6. Fasman, G., editor, Polv-α-Amino Acids (Marcel Dekker Inc., New York, 1967).Google Scholar
7. Block, H., Poly(γ-Benzvl-L-Glutamate) and Other Glutamic Acid Containing Polymers (Gordon & Breach Science Publishers, New York, 1983).Google Scholar