Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:47:30.380Z Has data issue: false hasContentIssue false

Monitoring Organic Thin Film Growth In Aqueous Solution In-situ With A Combined Quartz Crystal Microbalance and Ellipsometry

Published online by Cambridge University Press:  01 February 2011

Amitabha Sarkar
Affiliation:
[email protected], University of Nebraska, Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Tapani Viitala
Affiliation:
[email protected], KSV Instruments Ltd., Helsinki, Finland
Tino Hofmann
Affiliation:
[email protected], University of Nebraska, Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Tom E. Tiwald
Affiliation:
[email protected], J.A.Woollam Co. Inc., Lincoln, Nebraska, United States
John A. Woollam
Affiliation:
[email protected], J.A.Woollam Co. Inc., Lincoln, Nebraska, United States
Ann Kjerstad
Affiliation:
[email protected], University of Nebraska, Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Bahar Laderian
Affiliation:
[email protected], University of Nebraska, Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Mathias Schubert
Affiliation:
[email protected], University of Nebraska, Lincoln, Electrical Engineering, Lincoln, Nebraska, United States
Get access

Abstract

The change of the visible light ellipsometric parameters and mechanical harmonic frequencies of a hydrophobic gold surface attached to a quartz crystal are measured in aqueous solution during deposition of synperonic polymer thin film. The ellipsometry data reveal the amount of polymer mass attached to the surface, while the mechanical resonance shifts are caused by the total mass attached to the surface. Analysis of the combined ellipsometry and quartz crystal microbalance data reveal that the polymer thin film has a high water content, and we determine in-situ, for the first time, the porosity, or the water content, of a polymer thin film in aqueous solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Höök, F., Kasemo, B., Nylander, T., Fant, C., Scott, K., and Elwing, H., Anal. Chem. 73, 5796 (2001).Google Scholar
2. Wang, G., Rodahl, M., Edvardsson, M., Svedhem, S., Ohlsson, G., Höök, F., and Kasemo, B., Rev. Sci. Instr. 79, 075107 (2008).Google Scholar
2. Stalgren, J. J. R., Eriksson, J., and Boschkova, K., J. Colloid Interface Sci. 253, 190 (2002).Google Scholar
4. Macakova, L., Blomberg, E., and Claesson, P. M., Langmuir 23, 12436 (2007).Google Scholar
4. Harsha Mohan, P. and Bandyopadhyay, Ranjini, Phys. Rev. E 77, 041803 (2008).Google Scholar
5. Naderi, A. and Claesson, P. M., Langmuir 22, 7639 (2006).Google Scholar
6. Höök, F., Rodahl, M., Kasemo, B., and Brzezinski, P., Proc. Natl. Acad. Sci. USA, 95, 12271 (1998).Google Scholar
7. Sauerbrey, G., Phys, Z. . 155, 206 (1959).Google Scholar
9. Granstaff, V. E. and Martin, S. J., J. Appl. Phys. 75, 1319 (1994).Google Scholar
10. Cernosek, R. W., Martin, S. J., Hillman, A. R., and Bandey, H. L., IEEE Trans. Ultrason. Ferroelectr. Freq. Cont. 45, 1399 (1998).Google Scholar
11. Irene, G. E. and Tompkins, H.G. Eds., Handbook of Ellipsometry (Springer-Verlag GmbH Co. KG, Heidelberg, 2004).Google Scholar
12. Schubert, M., Ann. Phys. 15, 480 (2006).Google Scholar
13. Collins, R. W., An, I., Nguyen, H. V., and Lu, Y., Thin Solid Films 233, 244 (1994).Google Scholar
14. Rosenblum, J. F., Bulk Acoustic Wave Theory and Devices (Artech House, Boston, 1988).Google Scholar
15. Lucklum, R., Behling, C., Cernosek, R. W., and Martin, S. J., J. Appl. Phys. 30, 346 (1997).Google Scholar
16. Martin, S. J., Granstaff, V. E., and Frye, G. C., Anal. Chem. 63, 2272 (1991).Google Scholar