Published online by Cambridge University Press: 10 February 2011
Accurate modeling of extended defect kinetics is of primary importance for predictive modeling of transient enhanced diffusion (TED). Our previously developed model accurately accounts for extended defects and can be used predictively for TED. Using some experimental knowledge about the distribution of the extended defect population we can simplify our model. We demonstrate that reducing the number of solution variables by one doesn't affect the predictive capabilities of the model for extended defect kinetics and TED. However, some caution has to be used when applying the same principles to modeling of dopant deactivation.