Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T02:44:57.974Z Has data issue: false hasContentIssue false

Molecular-Thermodynamic Approach to Predict Micellar Solution Properties

Published online by Cambridge University Press:  21 February 2011

Daniel Blankschtein
Affiliation:
Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, Massachusetts 02139
Sudhakar Puvvada
Affiliation:
Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, Massachusetts 02139
Get access

Introduction

In this paper we present a conceptual overview of our recently developed molecular-thermodynamic approach to predict micellization, thermodynamic properties, and phase separation of micellar solutions. A detailed exposition may be found in Ref..

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Puvvada, S. and Blankschtein, D., J. Chem. Phys. (in press).Google Scholar
2. For an introduction to surfactant systems see Micellization, Solubilization and Microemulsions, edited by Mittal, K.L. (Plenum, New York, 1977), Vols. 1 and 2.Google Scholar
3. For a survey on applications involving surfactant systems see (a) Phenomena in Mixed Surfactant Systems, edited by Scamehorn, J.F. (ACS Symposium Series No. 311, 1986); (b) Macro- and Microemulsions - Theory and Applications, edited by D.O. Shah (ACS Symposium Series No. 272, 1985).Google Scholar
4. Israelachvili, J.N., Mitchell, D.J. and Ninham, B.W., J. Chem. Soc. Faraday Trans. 2, 72, 1525 (1976).Google Scholar
5. Ruckenstein, E. and Nagarajan, R., J. Phys. Chem. 79, 2622 (1975); A. Ben-Shaul and W.M. Gelbart, J. Phys. Chem. 86, 316 (1982).Google Scholar
6. Mukerjee, P., J. Phys. Chem. 76, 565 (1972).Google Scholar
7. Blankschtein, D., Thurston, G.M., and Benedek, G.B., Phys. Rev. Lett. 54, 955 (1985); G.M. Thurston, D. Blankschtein, M.R. Fisch, and G.B. Benedek, J. Chem. Phys. 84, 4558 (1986); D. Blankschtein, G.M. Thurston, and G.B. Benedek, J. Chem. Phys. 85, 7268 (1986).Google Scholar
8. Tanford, C., The Hydrophobic Effect (Wiley, New York, 1980); C. Tanford, J. Phys. Chem. 78, 2649 (1974).Google Scholar
9. Nagarajan, R. and Ruckenstein, E., J. Colloid Interface Sci. 60, 221 (1977); R. Nagarajan and E. Ruckenstein, J. Colloid Interface Sci. 71, 580 (1979).Google Scholar
10. Ben-Shaul, A., Szleifer, I., and Gelbart, W.M., J. Chem. Phys. 83, 3597 (1985); I. Szleifer, A. Ben-Shaul, and W.M. Gelbart, J. Chem. Phys. 83, 3612 (1985).Google Scholar
11. Gruen, D.W.R., J. Phys. Chem. 89, 146, (1985); J. Phys. Chem. 89, 153 (1985).Google Scholar
12. Puvvada, S. and Blankschtein, D., J. Phys. Chem. 93, 7753 (1989), and paper presented at the Fall Meeting of the Materials Research Society, Boston, Massachusetts (1989).Google Scholar