Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:56:01.919Z Has data issue: false hasContentIssue false

Molecular-Dynamics Study of the Growth of Si1-x Gex on Si(100)2×1

Published online by Cambridge University Press:  25 February 2011

Stéphane Ethier
Affiliation:
Département de physique et Groupe de recherche sur les couches minces, Université de Montréal, CP. 6128, Succ. A, Montréal, Québec, Canada H3C 3J7.
Laurent J. Lewis
Affiliation:
Département de physique et Groupe de recherche sur les couches minces, Université de Montréal, CP. 6128, Succ. A, Montréal, Québec, Canada H3C 3J7.
Get access

Abstract

We use molecular-dynamics simulations to study the growth of pure Si, Si0.5Ge0.5 and pure Ge on the reconstructed (100) surface of Si. The atoms interact with one another via effective potentials of the Stillinger-Weber form with parameters adjusted such as to describe all types of triplet interactions. Motivated by recent experimental studies of molecular-beam epitaxial films,1 we examine in particular the structure of the deposits for various substrate temperatures. We also examine the relaxation of the structure resulting from high-temperature annealing. Finally, we investigate the interdiffusion of the species at the substrate-deposit interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. LeGoues, F.K., Kesan, V.P., Iyer, S.S., Tersoff, J. and Tromp, R., Phys. Rev. Lett. 64, 2038 (1990).Google Scholar
2. People, R., IEEE, J. Quantum Electron. QE–22, 1696 (1986).Google Scholar
3. Gawlinski, E.T. and Gunton, J.D., Phys. Rev. B 36, 4774 (1987).Google Scholar
4. Schneider, M., Schuller, I.K., and Rahman, A., Phys. Rev. B 36, 1340 (1987).Google Scholar
5. Kwon, I., Biswas, R., Grest, G.S., and Soukoulis, C.M., Phys. Rev. B 41, 3678 (1990).Google Scholar
6. Luedtke, W.D. and Landman, Uzi, Phys. Rev. B 40, 11733 (1989).Google Scholar
7. Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
8. Khor, K.E. and Das Sarma, S., Phys. Rev. B 38, 3318 (1988).Google Scholar
9. Tersoff, J., Phys. Rev. Lett. 56, 632 (1986).Google Scholar
10. Biswas, R. and Hamann, D.R., Phys. Rev. Lett. 55, 2001 (1985).Google Scholar
11. Cowley, E.R., Phys. Rev. Lett. 60, 2379 (1988).Google Scholar
12. Ito, Tomonori, Khor, K.E., and Das Sarma, S., Phys. Rev. B 40, 9715 (1989).Google Scholar
13. Ding, Kejian and Andersen, Hans C., Phys. Rev. B 34, 6987 (1986).Google Scholar
14. Stranski, I.N. and Krastanow, Von L., Akad. Wiss. Lit. Mainz Math.-Natur. Kl. IIb 146, 797 (1939).Google Scholar