Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T12:09:36.515Z Has data issue: false hasContentIssue false

Molecular-Dynamics Study of the Amorphizatton of CuTi*

Published online by Cambridge University Press:  25 February 2011

Michael J. Sabochick
Affiliation:
Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433
Nghi Q. Lam
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Radiation-induced amorphization of the crystalline compound CuTi was investigated by molecular-dynamics simulations using new interatomic potentials derived from the embedded-atom method. Two different approaches to amorphization were tried: one in which Cu and Ti atoms were randomly exchanged, and another in which Frenkel pairs were introduced at random. The potential energy, volume expansion and pair-correlation function were calculated as functions of chemical disorder and atomic displacements. The results indicate that, although both chemical disordering and point-defect introduction increase the system energy and volume, the presence of Frenkel pairs is essential to trigger the crystalline-to-amorphous transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the Air Force Institute of Technology and the U.S. Department of Energy, BES-Materials Sciences, under Contract W-31-109-Eng-38.

References

REFERENCES

1 Russell, K. C., in Solute-Defect Interaction: Theory and Experiment, eds. Saimoto, S. et al. (Pergamon Press, Toronto, 1986), p. 317.Google Scholar
2 Pedraza, D. F., J. Mater. Res. 1, 425, (1986).Google Scholar
3 Luzzi, D. E. and Meshii, M., Res Mechanica 21, 207 (1987).Google Scholar
4 Luzzi, D. E., Mori, H., Fujita, H. and Meshii, M., Mater. Res. Soc. Symp.Proc. 51, 479 (1985).Google Scholar
5 Luzzi, D. E. and Meshii, M., J. Less Common Met. 140, 193 (1988).Google Scholar
6 Massobrio, C., Pontikis, V. and Martin, G., Phys. Rev. Lett. 62, 1142 (1989).Google Scholar
7 Limoge, Y. and Barbu, A., Phys. Rev. B30, 2212 (1984).Google Scholar
8 Limoge, Y., Rahman, A., Hsieh, H. and Yip, S., J. Non-Cryst. Sol. 99, 75 (1988).Google Scholar
9 Hsieh, H. and Yip, S., Phys. Rev. B39, 7476 (1989).Google Scholar
10 Meng, W. J., Okamoto, P. R., Thompson, L. J., Kestel, B. J. and Rehn, L. E., Appl. Phys. Lett. 53, 1820 (1988).Google Scholar
11 Wolf, D., Okamoto, P. R., Lutsko, J. F., Kluge, M. and Yip, S., J. Mater. Res. (in press).Google Scholar
12 Rehn, L. E., Okamoto, P. R., Pearson, J., Bhadra, R. and Grimsditch, M., Phys. Rev. Lett. 59, 2987 (1987).Google Scholar
13 Okamoto, P. R., Rehn, L. E., Pearson, J., Bhadra, R. and Grimsditch, M., J. Less Common Met. 140, 231 (1988).Google Scholar
14 Daw, M. S., Baskes, M. I. and Foiles, S. M. (private communication).Google Scholar
15 Oh, D. J. and Johnson, R. A., J. Mater. Res. 3, 471 (1988).Google Scholar
16 Daw, M. S. and Baskes, M. I., Phys. Rev. B29, 6443 (1984).Google Scholar
17 Structure Reports, Vol. 15, ed. Wilson, A. J. C., International Union of Crystallography, Utrecht (1951), p. 69.Google Scholar
18 Sabochick, M. J. and Lam, N. Q., to be published.Google Scholar
19 Koike, J., Okamoto, P. R., Rehn, L. E. and Meshii, M., J. Mater. Res. 4, 1143 (1989).Google Scholar
20 Luzzi, D. E., Mori, H., Fujita, H. and Meshii, M., Scripta Metall. 19, 897 (1985).Google Scholar