No CrossRef data available.
Article contents
Molecular Wires: Charge Injection, Charge Transport and Motion Mechanisms in DNA
Published online by Cambridge University Press: 21 March 2011
Extract
The use of the DNA duplex as a molecular wire is discussed with particular attention to recent experimental findings. Experimental studies of photo-excited hole dynamics in DNA can be understood within the phenomenological hopping model. However a microscopic first principles approach requires taking into account the interaction between charge and duplex degrees of freedom. The nature of possible metallic native DNA behavior is discussed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001
References
REFERENCES
1.
Tsivgoulis, G. M., Lehn, J. M., Adv. Mater.
9, 39 (1997); V. Mujica, A. Nitzan, Y. Mao, W. Davis, M. Kemp, A. Roitberg, M. A. Ratner, Adv. Chem. Phys. 107, 403 (1999); J. M. Tour, Accounts of Chemical Research 33, 791 (2000); N. Kimizuka, Advanced Materials 12, 1461 (2000); T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheun, C. M. Lieber, Science 289, 5476 (2000).Google Scholar
2.
Chen, J., Wang, W., Reed, M. A., Rawlett, A. M., Price, D. W., Tour, J. M., Applied Physics Letters
77, 1224 (2000).Google Scholar
4.
Wan, C. Z., Fiebig, T., Schiemann, O., Barton, J. K., Zewail, A. H., Proc. Natl. Acad. Sci. U. S. A.
97, 14052 (2000); M. A. Ratner, Proc. Natl. Acad. Sci. 98, 387 (2001).Google Scholar
5.
Meggers, E., Michel-Beyerle, M. E., and Giese, B., J. Am. Chem. Soc.
120, 12950 (1998).Google Scholar
6.
Giese, B., Wessely, S., Spormann, M., Lindemann, U., Meggers, E., Michel-Beyerle, M. E., Angew. Chem. Int. Ed.
38, 996 (1999).Google Scholar
7.
Lewis, F. D., Liu, X., Miller, S. E., Wasilevski, M. R., Letsinger, R. L., Sanishcili, R., Joachimiak, A., Tereshko, V., Egli, M., J. Am. Chem. Soc.
121, 9905 (1999); F. D. Lewis, R. L. Letsinger, M. R. Wasielewski, Accounts Chem. Res. 34, 159 (2001); F. D. Lewis, R. S. Kalgutkar, Y. S. Wu, X. Y. Liu, J. Q. Liu, R. T. Hayes, S. E. Miller, M. R. Wasielewski, J. Am. Chem. Soc. 120, 12950 (1998).Google Scholar
8.
Henderson, P. T., Jones, D., Hampikian, G., Kan, Y., Schuster, G. B., Proc. Natl. Acad. Sci. U. S. A.
96, 8353 (1999); D. Ly, L. Sanii, G. B. Schuster, J. Am. Chem. Soc. 121, 9400 (1999).Google Scholar
12.
Kasumov, A. Yu., Kociak, M., Gueron, S., Reulet, B., Volkov, V. T., Klinov, D. V., Bouchiat, H., Science
291, 280 (2001).Google Scholar
13.
Bixon, M., Giese, B., Wessely, S., Langenbacher, T., Michel-Beyerle, M. E., Jortner, J., Proc. Natl. Acad. Sci. U. S. A.
96, 11713 (1999); M. Bixon, J. Jortner, Phys. Chem. B 104, 3906 (2000).Google Scholar
16.
Saito, I., Nakamura, T., Nakatani, K., Yoshioka, Y., Yamaguchi, K., Sugiyama, H., J. Am. Chem. Soc.
120, 7063 (1998).Google Scholar
17.
Voityuk, A. A., Rosch, N., Bixon, M., Jortner, J., J. Phys. Chem. B
104, 9740 (2000).Google Scholar
18.
Berlin, Y. A., Burin, A. L., Ratner, M. A., Superlattices and Microstr.
28, 241 (2000).Google Scholar
19.
Berlin, Y. A., Burin, A. L., Ratner, M. A., to appear in Journ. Phys. Chem. (2001).Google Scholar
20.
Grozema, F. C., Berlin, Y. A., Siebbeles, L. D. A., J. Am. Chem. Soc.
122, 1093 (2000); A. L. Burin, Yu. A. Berlin, M. A. Ratner, J. Phys. Chem. A 105, 2652 (2001); V. Mujica, M. A. Ratner, Chem. Phys. 264, 365 (2001).Google Scholar
22.
Nitzan, A., Jortner, J., Wilkie, J., Burin, A. L., Ratner, M. A., J. Phys. Chem. B
104, 5661 (2000).Google Scholar
23.
Priyadarshy, S., Riser, S. M., Beratan, D. N., J. Phys. Chem.
100, 17678 (1996); I. V. Kurnikov, D. N. Beratan, Biophys. J. 80, 186 ( 2001).Google Scholar
24.
Pablo, P. J. de, Moreno-Herrero, F., Colchero, J., Herrero, J. Gomes, Herrero, P., Baro, A. M., Ordejon, P., Soler, J. M., Artacho, E., Phys. Rev. Lett.
85, 4992 (2000).Google Scholar
25.
Debije, M. G., Milano, M. T., Bernhard, W. A., Angew. Chem. Int. Ed.
38, 2752 (1999).Google Scholar
26.
Lewis, F. D., Letsinger, R. L., J. Biol. Inorg. Chem.
3, 215 (1998); F. D. Lewis, X. Y. Liu, J. Q. Liu, S. E. Miller, R. T. Hayes, M. R. Wasielewski, Nature 406, 51 (2000).Google Scholar
27.
Anderson, P. W., Phys. Rev.
109, 1492 (1958); E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).Google Scholar
28.
Melvin, T., Cunniffe, S. M. T., O'Neill, P., Parker, A. W. and Roldan-Arjona, T., Nucleic Acids Research
26, 4935 (1998).Google Scholar
32.
Segal, D., Nitzan, A., Davis, W. B., Ratner, M. A., J. Phys. Chem. B
104, 3817 (2000).Google Scholar
33.
Conwell, E. M., Rakhmanova, S. V., Proc. Natl. Acad. Sci. U. S. A.
97, 4556 (2000).Google Scholar
35.
Zhang, L., Sakai, T., Sakuma, N., Ono, T., Nakayama, K., New Diamond and Frontier Carbon Technology
9, 53 (1999).Google Scholar
37.
Gao, R. P., Pan, Z. W., Wang, Z. L., Appl. Phys. Lett.
78, 1757 (2001); A. F. Bobkov, et al, J. Vacuum Science and Technology 19, 32 (2001); A. Ilie, A. Hart, A. J. Flewitt, J. Robertson, W. I. Milne, J. Appl. Phys. 88, 6002 (2000).Google Scholar
38.
Oviedo-Roa, R., Perez, L. A., Wang, C. M., Phys. Rev. B
62, 13805 (2000); L. S. Levitov, JETP Letters 54, 546 (1991).Google Scholar