Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:13:06.329Z Has data issue: false hasContentIssue false

Molecular Wires: Charge Injection, Charge Transport and Motion Mechanisms in DNA

Published online by Cambridge University Press:  21 March 2011

Yu. A. Berlin
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208
A. L. Burin
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208
A. Nitzan
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208
V. Mujica
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208
A. Xue
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208
M. A. Ratner
Affiliation:
Department of Chemistry, Northwestern University, Evanston, IL, 60208
Get access

Extract

The use of the DNA duplex as a molecular wire is discussed with particular attention to recent experimental findings. Experimental studies of photo-excited hole dynamics in DNA can be understood within the phenomenological hopping model. However a microscopic first principles approach requires taking into account the interaction between charge and duplex degrees of freedom. The nature of possible metallic native DNA behavior is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsivgoulis, G. M., Lehn, J. M., Adv. Mater. 9, 39 (1997); V. Mujica, A. Nitzan, Y. Mao, W. Davis, M. Kemp, A. Roitberg, M. A. Ratner, Adv. Chem. Phys. 107, 403 (1999); J. M. Tour, Accounts of Chemical Research 33, 791 (2000); N. Kimizuka, Advanced Materials 12, 1461 (2000); T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheun, C. M. Lieber, Science 289, 5476 (2000).Google Scholar
2. Chen, J., Wang, W., Reed, M. A., Rawlett, A. M., Price, D. W., Tour, J. M., Applied Physics Letters 77, 1224 (2000).Google Scholar
3. Kelley, S. O., Barton, J. K., Chem. Biol. 5, 413 (1998).Google Scholar
4. Wan, C. Z., Fiebig, T., Schiemann, O., Barton, J. K., Zewail, A. H., Proc. Natl. Acad. Sci. U. S. A. 97, 14052 (2000); M. A. Ratner, Proc. Natl. Acad. Sci. 98, 387 (2001).Google Scholar
5. Meggers, E., Michel-Beyerle, M. E., and Giese, B., J. Am. Chem. Soc. 120, 12950 (1998).Google Scholar
6. Giese, B., Wessely, S., Spormann, M., Lindemann, U., Meggers, E., Michel-Beyerle, M. E., Angew. Chem. Int. Ed. 38, 996 (1999).Google Scholar
7. Lewis, F. D., Liu, X., Miller, S. E., Wasilevski, M. R., Letsinger, R. L., Sanishcili, R., Joachimiak, A., Tereshko, V., Egli, M., J. Am. Chem. Soc. 121, 9905 (1999); F. D. Lewis, R. L. Letsinger, M. R. Wasielewski, Accounts Chem. Res. 34, 159 (2001); F. D. Lewis, R. S. Kalgutkar, Y. S. Wu, X. Y. Liu, J. Q. Liu, R. T. Hayes, S. E. Miller, M. R. Wasielewski, J. Am. Chem. Soc. 120, 12950 (1998).Google Scholar
8. Henderson, P. T., Jones, D., Hampikian, G., Kan, Y., Schuster, G. B., Proc. Natl. Acad. Sci. U. S. A. 96, 8353 (1999); D. Ly, L. Sanii, G. B. Schuster, J. Am. Chem. Soc. 121, 9400 (1999).Google Scholar
9. Nakatani, K., Dohno, C., Saito, I., J. Am. Chem. Soc. 121, 10854 (1999).Google Scholar
10. Fink, H.-W. & Schönenberger, C., Nature 398, 407 (1999).Google Scholar
11. Porath, D., Bezryadin, A., Vries, S. De, Dekker, C., Nature 403, 635 (2000).Google Scholar
12. Kasumov, A. Yu., Kociak, M., Gueron, S., Reulet, B., Volkov, V. T., Klinov, D. V., Bouchiat, H., Science 291, 280 (2001).Google Scholar
13. Bixon, M., Giese, B., Wessely, S., Langenbacher, T., Michel-Beyerle, M. E., Jortner, J., Proc. Natl. Acad. Sci. U. S. A. 96, 11713 (1999); M. Bixon, J. Jortner, Phys. Chem. B 104, 3906 (2000).Google Scholar
14. Berlin, Y. A., Burin, A. L., Ratner, M. A., J. Phys. Chem. A 104, 443 (2000).Google Scholar
15. Berlin, Y. A., Burin, A. L., Ratner, M. A., J. Am. Chem. Soc. 123, 260 (2001).Google Scholar
16. Saito, I., Nakamura, T., Nakatani, K., Yoshioka, Y., Yamaguchi, K., Sugiyama, H., J. Am. Chem. Soc. 120, 7063 (1998).Google Scholar
17. Voityuk, A. A., Rosch, N., Bixon, M., Jortner, J., J. Phys. Chem. B 104, 9740 (2000).Google Scholar
18. Berlin, Y. A., Burin, A. L., Ratner, M. A., Superlattices and Microstr. 28, 241 (2000).Google Scholar
19. Berlin, Y. A., Burin, A. L., Ratner, M. A., to appear in Journ. Phys. Chem. (2001).Google Scholar
20. Grozema, F. C., Berlin, Y. A., Siebbeles, L. D. A., J. Am. Chem. Soc. 122, 1093 (2000); A. L. Burin, Yu. A. Berlin, M. A. Ratner, J. Phys. Chem. A 105, 2652 (2001); V. Mujica, M. A. Ratner, Chem. Phys. 264, 365 (2001).Google Scholar
21. Mujica, V., Roitberg, A. E., Ratner, M. A., J Chem. Phys. 112, 6834 (2000).Google Scholar
22. Nitzan, A., Jortner, J., Wilkie, J., Burin, A. L., Ratner, M. A., J. Phys. Chem. B 104, 5661 (2000).Google Scholar
23. Priyadarshy, S., Riser, S. M., Beratan, D. N., J. Phys. Chem. 100, 17678 (1996); I. V. Kurnikov, D. N. Beratan, Biophys. J. 80, 186 ( 2001).Google Scholar
24. Pablo, P. J. de, Moreno-Herrero, F., Colchero, J., Herrero, J. Gomes, Herrero, P., Baro, A. M., Ordejon, P., Soler, J. M., Artacho, E., Phys. Rev. Lett. 85, 4992 (2000).Google Scholar
25. Debije, M. G., Milano, M. T., Bernhard, W. A., Angew. Chem. Int. Ed. 38, 2752 (1999).Google Scholar
26. Lewis, F. D., Letsinger, R. L., J. Biol. Inorg. Chem. 3, 215 (1998); F. D. Lewis, X. Y. Liu, J. Q. Liu, S. E. Miller, R. T. Hayes, M. R. Wasielewski, Nature 406, 51 (2000).Google Scholar
27. Anderson, P. W., Phys. Rev. 109, 1492 (1958); E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).Google Scholar
28. Melvin, T., Cunniffe, S. M. T., O'Neill, P., Parker, A. W. and Roldan-Arjona, T., Nucleic Acids Research 26, 4935 (1998).Google Scholar
29. Sugiyama, H., Saito, I., J. Am. Chem. Soc. 118, 7063 (1996).Google Scholar
30. Russo, N., Toscano, M., Grand, A., J. Comput. Chem. 21, 1243 (2000).Google Scholar
31. Berlin, Y. A., Burin, A. L., Ratner, M. A., submitted to Physical Chemistry.Google Scholar
32. Segal, D., Nitzan, A., Davis, W. B., Ratner, M. A., J. Phys. Chem. B 104, 3817 (2000).Google Scholar
33. Conwell, E. M., Rakhmanova, S. V., Proc. Natl. Acad. Sci. U. S. A. 97, 4556 (2000).Google Scholar
34. Riviere, J. C., Mater. Sci. Technol. 9, 365 (1993).Google Scholar
35. Zhang, L., Sakai, T., Sakuma, N., Ono, T., Nakayama, K., New Diamond and Frontier Carbon Technology 9, 53 (1999).Google Scholar
36. Surma, S. A., Phys. Status Solidi A 183, 307 (2001).Google Scholar
37. Gao, R. P., Pan, Z. W., Wang, Z. L., Appl. Phys. Lett. 78, 1757 (2001); A. F. Bobkov, et al, J. Vacuum Science and Technology 19, 32 (2001); A. Ilie, A. Hart, A. J. Flewitt, J. Robertson, W. I. Milne, J. Appl. Phys. 88, 6002 (2000).Google Scholar
38. Oviedo-Roa, R., Perez, L. A., Wang, C. M., Phys. Rev. B 62, 13805 (2000); L. S. Levitov, JETP Letters 54, 546 (1991).Google Scholar