Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T11:42:15.346Z Has data issue: false hasContentIssue false

Molecular Vibrations as the Origin of Solid State Effects in Borohydrides

Published online by Cambridge University Press:  31 January 2011

Andreas Borgschulte
Affiliation:
[email protected], Empa, Laboratory Hydrogen & Energy, Duebendorf, Switzerland
Robin Gremaud
Affiliation:
[email protected], Empa, Laboratory Hydrogen & Energy, Duebendorf, Switzerland
Florian Buchter
Affiliation:
[email protected], Empa, Laboratory Hydrogen & Energy, Duebendorf, Switzerland
Zbigniew Lodziana
Affiliation:
[email protected], Empa, Laboratory Hydrogen & Energy, Duebendorf, Switzerland
Andreas Züttel
Affiliation:
[email protected], Empa, Laboratory Hydrogen & Energy, Duebendorf, Switzerland
Timmy Ramirez-Cuesta
Affiliation:
[email protected], Rutherford Appleton Laboratory, ISIS Facility, Didcot, United Kingdom
Miriam Bardaji
Affiliation:
[email protected], Karlsruhe Institute of Technology, Institute of Nanotechnology, Karlsruhe, Germany
Wiebke Lohstroh
Affiliation:
[email protected], Karlsruhe Institute of Technology, Institute of Nanotechnology, Karlsruhe, Germany
Max Fichtner
Affiliation:
[email protected], Karlsruhe Institute of Technology, Institute of Nanotechnology, Karlsruhe, Germany
Get access

Abstract

In this proceeding, we discuss measurements of the vibrational properties of hydrides using inelastic neutron scattering (INS) and the impact of the vibrational modes on the thermodynamic properties. We compare the heat capacity of PdH0.63 and LiBH4 as measured calorimetrically to that derived form INS spectra. We show that the vibrational properties of Ca(BH4)2 depend on the specific phase and hitherto determine their stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schlapbach, L. Meli, F. and Züttel, A., in Intermetallic Compounds, Principles & Practice, (Eds.: Westbrook, J. H. and Fleischer, R. L.) John Wiley & Sons Ltd., Chichester 1994.Google Scholar
2. Rowe, J. M. Rush, J. J. Smith, H. G. Mostoller, M. Flotow, H. E. Phys. Rev. Lett. 33 1927 (1974).Google Scholar
3. Buchter, F. Lodziana, Z. Mauron, Ph., Remhof, A. Friedrichs, O. Borgschulte, A. Züttel, A., Sheptyakov, D. Strässle, Th., and Ramirez-Cuesta, A. J., Phys. Rev. B78 094302 (2008).Google Scholar
4. Remhof, A. Gremaud, R. Buchter, F. Eodziana, Z. Ramirez-Cuesta, A. J., Borgschulte, A. Züttel, A., Z. Phys. Chem., in press (2009); E. R. Andresen R. Gremaud, A. Borgschulte, P. Hamm, J. Phys. Chem. A 113 12838 (2009).Google Scholar
5. Ross, D. K. Antonov, V. E. Bokhenkov, E. L. Kolesnikov, A. I. Ponyatovsky, E. G. and Tomkinson, J. Phys. Rev. B58 2591 (1998).Google Scholar
6. Mitchell, P.C.H. Parker, S.F. Ramirez-Cuesta, A.J., Tomkinson, J. Vibrational Spectroscopy with Neutrons with Applications in Chemistry, Biology, Material Sciences and Catalysis, World Scientific, Singapore, 2005.Google Scholar
7. Nace, D. M. and Aston, J. G. J. Amer. Chem. Soc. 79 3623 (1957).Google Scholar
8. Hallett, N. C. and Johnston, H. L. J. Amer. Chem. Soc. 75 1496 (1953).Google Scholar
9. Buchter, F. Eodziana, Z. Remhof, A. Friedrichs, O. Borgschulte, A. Mauron, Ph. and Züttel, A., Sheptyakov, D. Palatinus, L. Cholpek, K. and Fichtner, M. Barkhordarian, G. and Bormann, R. Hauback, B. C. J. Phys. Chem. C113 17223 (2009).Google Scholar
10. Filinchuk, Y. Rönnebro, E., Chandra, D. Acta Mater. 2009, 57, 732.Google Scholar
11. Lee, Y. S. Kim, Y. Cho, Y. Whan, Shapiro, D. Wolverton, C. and Ozolinŝ, V., Phys. Rev. B79 104107 (2009)Google Scholar