Article contents
Molecular Sieve Based Chemical Sensors
Published online by Cambridge University Press: 28 February 2011
Abstract
Molecular sieves, are attractive materials for discriminating chemical sensors. These microporous metal oxides offer shape selective adsorption as well as chemical and thermal stability. Molecular sieves have shown promise in SAW devices, however, these sensors rely only on a weight change upon adsorption of target molecules. We have developed a molecular sieve based capacitance type chemical sensor. Such a device should discriminate between molecules of similar size and shape because the signature change depends on the polarity of the adsorbate which in turn affects the dielectric properties of the molecular sieve. In this paper we describe the deposition of AIPO4 and MeAPO molecular sieve thin films on titanium nitride coated silicon wafers by laser ablation. A subsequent hydrothermal treatment followed by a Pd/Au coating and standard microlithography techniques generate the capacitors. The results for capacitance measurements in the presence of CO2, CO, NO, N2, O2, H2O and toluene indicate clear differences in selectivity between small, medium and large pore molecular sieves.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1995
References
- 8
- Cited by