Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-03T02:42:10.261Z Has data issue: false hasContentIssue false

Molecular pumping and separation in a symmetric channel

Published online by Cambridge University Press:  01 February 2011

D. Fleishman
Affiliation:
School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel.
A.E. Filippov
Affiliation:
Donetsk Institute for Physics and Engineering of NASU, 83144, Donetsk, Ukraine.
M. Urbakh
Affiliation:
School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel.
Get access

Abstract

A mechanism responsible for directed transport and molecular separation in a symmetric channel is proposed. We found that under the action of spatial harmonic oscillations of the channel, the system exhibits a directed transport in either direction, presenting multiple current reversals as the amplitude and/or frequency of the oscillations are varied. The particles of different masses may be forced to move with different velocities in the same or in the opposite directions by properly adjusting driving parameters. The directed transport can be produced in both directions even in the absence of thermal noise, the latter can speed up or slow down the transport depending on the system parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFEREES

1. Harrison, D.J. et al., Science 261, 895 (1993).Google Scholar
2. Gallardo, B.S. et al., Science 283, 57 (1999).Google Scholar
3. Ajdari, A., Phys. Rev. E. 61, R45 (2000).Google Scholar
4. Kettner, C., Reimann, P., Hanggi, P., and Muller, F., Phys. Rev. E. 61, 312 (2000).Google Scholar
5. Marquet, C., Buguin, A., Talini, L., and Silberzan, P., Phys. Rev. Lett. 88, 168301 (2002).Google Scholar
6. Siwy, Z. and Fulinski, A., Phys. Rev. Lett. 89, 198103 (2002).Google Scholar
7. Cell Physiology, edited by Sperelakis, N. (Academic Press, San Diego, California, 1998).Google Scholar
8. Larrondo, HA., Arizmendi, CM., Family, F., Physica A, 320, 119 (2003).Google Scholar
9. Julicher, F., Ajdari, A., and Prost, J., Rev. Mod. Phys. 69, 1269 (1997).Google Scholar
10. Astumian, R.D. and Hanggi, P., Physics Today 55, 33 (2002).Google Scholar
11. Reimann, P., Phys. Rep. 361, 57 (2002).Google Scholar
12. Jung, P., Kissner, J.G. and Hänggi, P., Phys. Rev. Lett. 76, 3436 (1996).Google Scholar
13. Saitô, H., Tsuchida, T., Ogawa, K. et.al, Biochim. Biophys. Acta, 97, 1565 (2002).Google Scholar
14. Porto, M., Urbakh, M. and Klafter, J., Phys. Rev. Lett. 84, 6058 (2000); Phys. Rev. E. 65, 011108 (2001).Google Scholar
15. Flach, S., Yevtushenko, O., Zolotaryuk, Y., Phys. Rev. Lett. 84, 2358 (2000).Google Scholar
16. Zheng, Zh., Cross, M. C. and Hu, G., Phys. Rev. Lett. 89, 154102 (2002).Google Scholar
17. Debasis, D., Mangal, C.M. and Jayannava, A.M., Physica A 296, 375 (2001).Google Scholar
18. Yeh, S.R., Seul, M., and Shraiman, B.I., Nature (London) 386, 57 (1997).Google Scholar
19. Risken, H., The Fokker-Planck Equation, 2rd ed, (Springer, Berlin, 1996) p. 8.Google Scholar