No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The coadsorption and reaction of diborane with ammonia and with hydrazine on Ru(0001) have been studied using X-ray photoelectron spectroscopy (XPS) and thermal desorption mass spectroscopy (TDS). Diborane is found to decompose to atomic boron and hydrogen upon adsorption at T>200K. Multilayers of diborane and ammonia, deposited at 90K on Ru(0001), react when annealed to 600K. The XPS results indicate that boron-nitrogen adlayers can be formed by this reaction. These boron-nitrogen films are boron-rich and.decompose at temperatures higher than 1100K. Our TDS studies reveal that hydrazine decomposes extensively to NH3, N2, N and H on Ru(0001). Due to its higher reactivity, boron-nitrogen films of B/N stoichiometric ratio near unity are obtained when hydrazine is used rather than ammonia. In our studies, these films were formed by either simultaneously dosing B2H6 and N2H4 at 450K or by coadsorption of the reactants at 90K and subsequent annealing to 450K. These studies have shown that diborane and hydrazine can be successfully used as molecular precursors in the low temperature deposition of boron nitride thin-films.