No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
In order to explore rational designs and synthetic strategies toward efficient hydrogen storage materials, quantum mechanical calculations and grand canonical Monte Carlo simulations have been carried out on a series of the Metal-Organic Frameworks containing various organic linkers. The calculations for specific surface areas and the shape of frontier orbitals for various frameworks indicate that the hydrogen storage capacity is largely dependent on the effective surface area of the material, rather than the free volume. Based on the iso-electrostatic potential surface from density functional calculations and the theoretical amount of adsorbed hydrogen from the grand canonical Monte Carlo calculations, it was also found that the electron localization around the organic linker plays an important role in the hydrogen storage capacity of Metal-Organic Frameworks. The prediction of the modeling study is supported by the hydrogen adsorption experiments with IRMOF-1 and -3, revealing the more enhanced hydrogen storage capacity of IRMOF-3 compared with that of IRMOF-1 at 77 K and H2 1 atm.