Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-04T22:46:45.115Z Has data issue: false hasContentIssue false

Molecular Mobility and Confined Plasticity in NEMS Applications

Published online by Cambridge University Press:  01 February 2011

René M. Overney
Affiliation:
Department of Chemical Engineering, University of Washington Seattle, WA 98195, U.S.A.
Scott Sills
Affiliation:
Department of Chemical Engineering, University of Washington Seattle, WA 98195, U.S.A.
Get access

Abstract

Many modern and future technological applications involve ultrathin polymer films with a thickness below the 100-nanometer scale, where statistical bulk averaging is jeopardized and interfacial constraints dictate transport properties. In such confined polymeric systems, transport properties strongly depend on molecular relaxation and structural phases that deviate from the bulk. This is particularly relevant in applications involving nano-electromechanical systems (NEMS). In this paper, we address the correspondence between bulk deviating local glass transition values with the non-monotonic plastic deformation properties in ultrathin polystyrene films. Polystyrene serves as a model material in a NEMS application designed to circumvent the superparamagnetic limit associated with magnetic data storage. The application involves data bit writing via an ultrahigh density thermomechanical indentation process. An elaborate friction-velocity analysis is introduced as a material characterization tool. It provides fundamental insight into the glass forming process, and consequently, the glass transition value in ultrathin spin coated polymer films. The glass transition value is thereby discussed as a phenomenological limit, not unlike an asymptote, to a diverging size of cooperative rearranging regions upon cooling. Unexpected large cooperative clusters up to 40 nm were observed – a dimension that is noticeable at the 100-nanometer length scale. In the light of MD simulations and their good correspondence with the presented intrinsic friction analysis, the importance of angular and torsional intramolecular motions are particularly emphasized for nanotechnological applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Durig, U., Cross, G., Despont, M., et al., Tribology Letters 9, 25 (2000).Google Scholar
2. Eleftheriou, E., Antonakopoulos, T., Binnig, G. K., et al., Ieee Transactions on Magnetics 39, 938 (2003).Google Scholar
3. Vettiger, P., Cross, G., Despont, M., et al., IEEE Transactions on Nanotechnology 1, 39 (2002).Google Scholar
4. Sillescu, H., Bohmer, R., Diezemann, G., et al., Journal of Non-Crystalline Solids 307, 16 (2002).Google Scholar
5. Drake, J. M., Klafter, J., Levitz, P. E., et al., (Materials Research Society, Warrandale, PA, 2001), Vol. 651.Google Scholar
6. Liu, Y., Russell, T. P., Samant, M. G., et al., Macromolecules 30, 7768 (1997).Google Scholar
7. Overney, R. M., Leta, D. P., Fetters, L. J., et al., J. Vac. Sci. Technol. B 14, 1276 (1996).Google Scholar
8. Overney, R. M., Leta, D. P., Pictroski, C. F., et al., Phys. Rev. Lett. 76, 1272 (1996).Google Scholar
9. Frank, B., Gast, A. P., Russel, T. P., et al., Macromolecules 29, 6531 (1996).Google Scholar
10. Zheng, X., Rafailovich, M. H., Sokolov, J., et al., Phys. Rev. Lett. 79, 241 (1997).Google Scholar
11. Sills, S. and Overney, R. M., Phys. Rev. Lett. 91, 095501(1 (2003).Google Scholar
12. Overney, R. M., Buenviaje, C., Luginbuehl, R., et al., J. Thermal Anal. and Cal. 59, 205 (2000).Google Scholar
13. Frommer, J. and Overney, R. M., in ACS Symposium Series, edited by Frommer, J. and Overney, R. M. (Oxford Univ. Press, 2001), Vol. 781.Google Scholar
14. Buenviaje, C., Dinelli, F., and Overney, R. M., in ACS Symposium Series “Interfacital Properties on the Submicron Scale”, edited by Frommer, J. and Overney, R. M. (Oxford University Press, New Orleans, 2000), Vol. 781, p. 76.Google Scholar
15. Ge, S., Pu, Y., Zhang, W., et al., Phys. Rev. Lett. 85, 2340 (2000).Google Scholar
16. Dinelli, F., Buenviaje, C., and Overney, R. M., Thin Solid Films 396, 138 (2001).Google Scholar
17. Gray, T., Buenviaje, C., Overney, R. M., et al., Appl. Phys. Lett. 83, 2563 (2003).Google Scholar
18. Overney, R. M., Tyndall, G., and Frommer, J., in Handbook of Nanotechnolgy, edited by Bhushan, B. (Springer Verlag, Heidelberg, 2004).Google Scholar
19. Gray, T., Jen, A. K. Y., and Overney, R. M..Google Scholar
20. Vettiger, P., Cross, G., Despont, M., et al., in Transducers ‘01. Eurosensors XV. 11th International Conference on Solid State Sensors and Actuators, edited by Obermeier, E. (Springer Verlag, Berlin, 2001), Vol. 2, p. 1054.Google Scholar
21. Mamin, H. J. and Rugar, D., Appl. Phys. Lett. 61, 1003 (1992).Google Scholar
22. Nonnenmacher, M., Greschner, J., Wolter, O., et al., J. Vac. Sci. Technol. B 9, 1358 (1991).Google Scholar
23. Meyer, E., Overney, R. M., Dransfeld, K., et al., Nanoscience: Friction and Rheology on the Nanometer Scale (World Scientific Publ., Singapore, 1998).Google Scholar
24. Boyer, R. F. and Turley, S. G., in Molecular basis of transitions and relaxations, edited by Meier, D. J. (Gordon and Breach Science Publishers, Inc., New York, 1978), p. 335.Google Scholar
25. Debenedetti, P. G. and Stillinger, F. H., Nature 410, 259 (2001).Google Scholar
26. Biju, V. P., Ye, J. Y., and Ishikawa, M., Journal of Physical Chemistry B 107, 10729 (2003).Google Scholar
27. Sillescu, H., J. Non-Crystalline Solids 243, 81 (1999).Google Scholar
28. Roland, C. M. and Casalini, R., J. Chem. Phys. 119, 1838 (2003).Google Scholar
29. Ludema, K. C. and Tabor, D., Wear 9, 329 (1966).Google Scholar
30. Bennemann, C., Donati, C., Baschnagel, J., et al., Nature 399, 246 (1999).Google Scholar
31. Lyulin, A. V. and Michels, M. A. J., Macromolecules 35, 1463 (2002).Google Scholar
32. Lyulin, A. V., de Groot, J. J., and Michels, M. A. J., Macromol. Symp. 191, 167 (2003).Google Scholar
33. Buenviaje, C., Ge, S., Rafailovich, M., et al., Langmuir, in press. (1999).Google Scholar
34. Briscoe, B. J., Evans, P. D., Biswas, S. K., et al., Trib. Int. 29, 93 (1996).Google Scholar
35. Adams, M. J., Allan, A., Briscoe, B. J., et al., Wear 251, 1579 (2001).Google Scholar
36. Ramond-Angélélis, C., (Ecole Nationale Supérieure des Mines de Paris, 1998).Google Scholar
37. Jardret, V. D. and Oliver, W. C., Mat. Res. Soc. Symp. Proc. 594, 251 (2000).Google Scholar
38. Malow, T. R., Koch, C. C., Miraglia, P. Q., et al., Mat. Sci. Eng. A252, 36 (1998).Google Scholar
39. Vaisyanathan, R., Dao, M., Ranichandran, G., et al., Acta Mater. 49, 3781 (2001).Google Scholar
40. Matthews, J. R., Acta Met. 28, 311 (1980).Google Scholar
41. Tsui, T. Y., Vlassak, J., and Nix, W. D., J. Mater. Res. 14, 2204 (1999).Google Scholar
42. Tsui, T. Y. and Pharr, G. M., J. Mater. Res. 14, 292 (1999).Google Scholar
43. Randall, N. X., Julia-Schmutz, C., and Soro, J. M., Surface and Coatings Tech. 108–109, 489 (1998).Google Scholar
44. Kramer, D. E., Volinsky, A. A., Moody, N. R., et al., J. Mater. Res. 16, 3150 (2001).Google Scholar
45. Sills, S., Frommer, J., Chau, W., et al., J. Chem. Phys. 120, 5334 (2004).Google Scholar