Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:01:49.510Z Has data issue: false hasContentIssue false

Molecular Growth Pathways in Silica Sol-Gel Polymerization

Published online by Cambridge University Press:  25 February 2011

W. G. Klemperer
Affiliation:
Department of Chemistry and Materials Research Laboratory, University of Illinois, Urbana, IL 61801
S. D. Ramamurthi
Affiliation:
Department of Chemistry and Materials Research Laboratory, University of Illinois, Urbana, IL 61801
Get access

Abstract

Capillary gas chromatography has been used to monitor the stoichi-ometries, structures, and abundances of low molecular weight polysilicate esters formed by partial hydrolysis of methanolic tetramethylorthosili-cate and redistribution of methanolie hexamethyoxydisiloxane under acidic (HC1) and basic (KOH) conditions. The polysilicate molecular size distributions, expressed in terms of mole percent of total silicon present as a function of degree of polymerization, show maxima near the number average degree of polymerization under acidic conditions. Under basic conditions, the distribution has its maximum at the monomer percent and extends to very high molecular weights, yielding a distribution far broader than the one observed under acidic conditions. These features are in agreement with covalent network theories of silica gelation, as opposed to particle aggregation theories. Weight fraction distributions of the type observed under acidic conditions are characteristic of linear polymers with a low degree of crosslinking and weight fraction distributions of the type observed under basic conditions are characteristic of branched polymers with high degree of crosslinking. The low degree of crosslinking obtained under acidic conditions is observed to arise from steric crowding that discourages branching in polysilicate structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Konrad, E., Baechle, O., Signer, R., J. L. Ann. der Chemie 474, 276 (1929);Google Scholar
b) Signer, R. and Gross, H., J. L. Ann. der Chemie 499, 158 (1932).Google Scholar
2. For recent studies of sol-gel polymerization, see: a) Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, New York, 1984);Google Scholar
b) Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 32, Elsevier, New York, 1986);Google Scholar
c) Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, New York, NY, 1986);Google Scholar
d) Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 73, Pittsburgh, PA 1986).Google Scholar
3. a) Nogami, M. and Moriya, Y., J. Non-Cryst. Sol. 37, 191 (1980);Google Scholar
b) Brinker, C. J., Keefer, K. D., Schaefer, D. W., and Ashley, C. S., J. Non-Cryst. Sol. 48, 47 (1982).CrossRefGoogle Scholar
4. Sakka, S. and Kamiya, K., J. Non-Cryst. Sol. 48, 31 (1982).CrossRefGoogle Scholar
5. a) Yamane, M., Inoue, S., and Yasumori, A., J. Non-Cryst. Sol. 63, 13 (1984);Google Scholar
b) Brinker, C. J., Keefer, K. D., Schaefer, D. W., Assink, R. A., Kay, B. D., and Ashley, C. S., J. Non-Cryst. Sol. 63, 45 (1984);Google Scholar
c) Schaefer, D. W. and Keefer, K. D. in Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 32, Elsevier, New York, 1986), p. 1;Google Scholar
d) Keefer, K. D., in Better Ceramics Through Chemistry, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 32, Elsevier, New York, 1986), p. 15.Google Scholar
6. a) Zerda, T. W., Bradley, M., and Jonas, J., Mat. Letters 3, 124 (1985);Google Scholar
b) Artaki, I., Bradley, M., Zerda, T. W., and Jonas, J., L. Phys. Chem. 89, 4399 (1985).Google Scholar
7. a) Kelts, L. W., Effinger, N. J., and Melpolder, S. M., J. Non-Cryst. Sol. 83, 353 (1986);Google Scholar
b) Klemperer, W. G., Mainz, V. V., and Millar, D. M., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Proc. 73, Pittsburgh, PA, 1986), p. 3;Google Scholar
c) Balfe, C. A. and Martinez, S. L., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Proc. 73, Pittsburgh, PA, 1986), p. 27;Google Scholar
d) Lin, C.-C. and Basil, J. D., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Proc. 73, Pittsburgh, PA, 1986), p. 585.Google Scholar
8. a) Klemperer, W. G. and Ramamurthi, S. D., Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem. 28, 432 (1987);Google Scholar
b) Klemperer, W. G., Mainz, V. V., Ramamurthi, S. D., Rosenberg, F. S., these Proceedings.Google Scholar
9. a) Schwartz, R. and Knauff, K. G., Z. Anorg. Alig. Chemie 275, 176 (1954);Google Scholar
b) Van Alphen, J., Reci. Trav. Chim. Pays-Bas 49, 754 (1930).Google Scholar
10. Flory, Paul J., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (John Wiley and Sons, New York, NY, 1986) pp. 415417, and references cited therein.Google Scholar
11. Her, Ralph K., The Chemistry of Silica (John Wiley and Sons, New York, 1979) Chapter 3.Google Scholar
12. Flory, Paul J., Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953) Chapters VIII and IX.Google Scholar
13. a) Stockmayer, W. H., J. Chem. Phys. 11, 45 (1943);CrossRefGoogle Scholar
b) Stockmayer, Walter H., in Advancing Fronts in Chemistry, edited by Twiss, S. B. (Reinhold, New York, NY, 1945) pp. 6173.Google Scholar
14. de Gennes, P.-G., Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979) Chapter V.Google Scholar
15. Zallen, Richard, The Physics of Amorphous Solids (John Wiley and Sons, New York, 1983) pp. 167183.Google Scholar
16. Volkenstein, M. V., Configurational Statistics of Polymeric Chains (Wiley Interscience, New York, 1963) p. 55.Google Scholar
17. a) Gordon, M. and Scantlebury, G. R., Proc. Roy. Soc. 292A, 380 (1966);Google Scholar
b) Leung, Y.-K. and Eichinger, B. E., J. Chem. Phys. 80, 3877, 3885 (1984).CrossRefGoogle Scholar
18. Bogush, G. W. and Zukoski, C. F., these Proceedings.Google Scholar
19. a) Reference 12, pp. 356360; b) Reference 14, pp. 147–148.Google Scholar