Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T10:23:01.950Z Has data issue: false hasContentIssue false

Molecular Grafting on Si(111) Surfaces: An Electrochemical Approach

Published online by Cambridge University Press:  10 February 2011

C. Henry de Villeneuve
Affiliation:
Laboratoire de Physique des Liquides et Électrochimie, CNRS - UPR 15, ESPCI, 10 rue Vauquelin, F-75005 Paris (France)
J. Pinson
Affiliation:
Laboratoire d'Électrochimie Moléculaire, CNRS - URA 438, Univertsité Paris 7, 2 Place Jussieu, F-75005 Paris (France)
F. Ozanam
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS - UR 1254, École Polytechnique, F-91128 Palaiseau (France)
J. N. Chazalviel
Affiliation:
Laboratoire de Physique de la Matière Condensée, CNRS - UR 1254, École Polytechnique, F-91128 Palaiseau (France)
P. Allongue*
Affiliation:
Laboratoire de Physique des Liquides et Électrochimie, CNRS - UPR 15, ESPCI, 10 rue Vauquelin, F-75005 Paris (France)
*
* corresponding author: e-mail [email protected]
Get access

Abstract

This works addresses the question of the direct attachment of organic molecules on Si(111) by an electrochemical method. Anodic grafting of -OR group is demonstrated by in-situ STM and the LDOS characterized. The grafting of aryl groups, by reduction of aryl diazonium salts in aqueous solution, is also described. This approach leads to well ordered and close-packed thin molecular films with various functionality. Different chemical and structural characterizations conclude to a Si-C binding, between the Si surface and aryl groups. The stability of films is also investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ulman, A., in Ultrathin Organic Film. Academic Press, San Diego (1991).Google Scholar
[2] Ulman, A., Chem. Rev., 96 (1996) 1533 Google Scholar
[3] See, e.g., the Book of Abstracts of the ACS National Meeting in Chicago (1995), section Surface Science and Colloids.Google Scholar
[4] Ulman, A.. Advanced Materials, 2 (1990) 573 Google Scholar
[5] Lindford, M. R. and Chidsey, C. E. D., J. Arn. Chem. Soc., 115 (1993) 12631.Google Scholar
[6] Lindford, M. R., Fenter, P., Eisenberger, P. M. and Chidsey, C. E. D., J. Am. Chem. Soc., 117 (1995) 3145.Google Scholar
[7] Warntjes, M., Veillard, C., Ozanam, F. and Chazalviel, J. N., J. Electrochem. Soc., 142, 4138 (1995);Google Scholar
Veillard, C., Warntjes, M., Ozanam, F. and Chazalviel, J. K., Proc. 4th Int. Symp. on Advanced Luminescent Materials, Lockwood, D. J., Fauchet, P. M., Koshida, N. and Brueck, S. R. J. Eds., The Electrochemical Society Softbounds, PV 95–25 (1995) p250.[8]Google Scholar
[8] Dubois, T., Ozanam, F. and Chazalviel, J. N., Book of Abstracts of the 3rd European Workshop on Electrochemical Processing of Semiconductors (EWEPS '96), Meudon, Nov. 1996 Google Scholar
[9] Allongue, P., Phys. Rev. Lett., 77 (1996) 1986.Google Scholar
[10] Henry de Villeneuve, C., Pinson, J., Bernard, M. C. and Allongue, P., J. Phys. Chem., submittedGoogle Scholar
[11] Allongue, P., Kieling, V. and Gerischer, H., J. Electrochem. Soc., 140 (1993) 1008 Google Scholar
[12] For a review, see Higashi, G. S. and Chabal, Y. J., in Handbook of Semiconductor Wafer Cleaning Technology, Kern, W., Ed., Noyes Publications, Park Ridge (1993).Google Scholar
[13] Jakob, P. and Chabal, Y. J., J. Chem. Phys., 95 (1991) 2897.Google Scholar
[14] Pietsch, G. J., Köhler, U. and Henzler, M., J. Appl. Phys., 73, 4797 (1993);Google Scholar
Hessel, H. E., Feltz, A., Memmert, U. and Behm, R. J., Chem. Phys. Lett., 186, 275 (1991)Google Scholar
[15] Allongue, P., Kieling, V. and Genscher, H., Electrochim. Acta, 40 (1995) 1353.Google Scholar
[16] Allongue, P., Costa-Kieling, V. and Genscher, H., J. Electrochem. Soc., 140 (1993) 1019.Google Scholar
[17] Delamar, M., Hitmi, R., Pinson, J. and Saveant, J. M., J. Am. Chem. Soc., 114 (1992) 5883.Google Scholar
[18] Allongue, P., Delamar, M., Desbat, B., Fagebaume, O., Hitmi, R., Pinson, J. and Saveant, J. M., J. Am. Chem. Soc., in press.Google Scholar
[19] Liu, Y. C. and Mc Crerry, R. L., J. Am. Chem. Soc, 117 (1995) 11254.Google Scholar
[20] Stradins, J. P. and Glezer, V. T. G. in Encyclopedia of the Elements, Bard, A. J. and Lund, H. Eds., Vol XII, p 78, Marcel Dekker, New York 1973 Google Scholar
[21] Savéant, J. M., New J. Chem., 16 (1992) 131 Google Scholar
[22] Niwano, M., Katakura, H., Takeda, Y., Takawura, Y., Miyamoto, N., Hiraiwa, A. and Kunhiro, K., J. Vac. Sci. Technol., A9 (1991) 195;Google Scholar
Niwano, M., Takeda, Y., Kurita, K. and Miyamoto, N., J. Appl. Phys., 72 (1992) 2488.Google Scholar
[23] This estimate assumes that λ is similar for aryl layers and alkylthiols. Values of λ = 42 and 34 Å have been reported for photoelectrons of kinetic energy of 1151 and 1402 eV respectively: see Bain, C. D. and Whitesides, G. M., J. Phys. Chem., 93 (1989) 1670.Google Scholar
[24] Bellamy, L. J., in Infra Red Spectra of Complex Molecules, Methuen, London, 1958 Google Scholar
[25] Gruynters, M., Chabal, Y. J. and Dumas, P., to be publishedGoogle Scholar