Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:56:39.751Z Has data issue: false hasContentIssue false

A Molecular Dynamics Study of the Terminal Zr(Ni) Solid Solutions

Published online by Cambridge University Press:  15 February 2011

F. Cleri
Affiliation:
ENEA, Ente per le Nuove Tecnologie, l'Energia e l'Ambiente Centro Ricerche Casaccia, C.P. 2400, 00100 Roma A.D., Italy
G. Mazzone
Affiliation:
also: Istituto Nazionale Fisica della Materia, Unità di Perugia, Perugia, Italy
V. Rosato
Affiliation:
ENEA, Ente per le Nuove Tecnologie, l'Energia e l'Ambiente Centro Ricerche Casaccia, C.P. 2400, 00100 Roma A.D., Italy
Get access

Abstract

The Zr terminal portion of the Zr-Ni phase diagram has been evaluated by means of a many-body tight-binding potential. The internal energy curves of the Zr(Ni) solid solutions at T=300 K have been calculated by Molecular Dynamics simulations. These curves exhibit positive values, contrary to former empirical phase diagram calculations. Implications of these results relevant to the problem of amorphization in metallic systems by solid-state reactions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Johnson, W.L., in Materials Interfaces , edited by Wolf, D. and Yip, S., Plenum Press, New York, 1991, Chapter 14.Google Scholar
2. Hood, G.H. and Schultz, R.J., Acta Metall., 22 (1972), pag.459.Google Scholar
3. Henaff, M.P., Colinet, C., Pasturel, A. and Buschow, K.H.J., J. Appl. Phys., 56 (1984), p.307.Google Scholar
4. Saunders, N. and Miodownik, A.P., J. Mater. Res., 1 (1986), p.38.Google Scholar
5. Vredenberg, A.M., Westendorp, J.F.M., Saris, F.W., van der Pers, N.M. and de Keijser, Th.H., J. Mater. Res., 1 (1986), p.774.Google Scholar
6. Ehrhart, P., Averback, R.S., Hanh, H., Yadavalli, S. and Flynn, C.P., J. Mater. Res., 3 (1988), p.1276.Google Scholar
7. Schwarz, R.B. and Rubin, J.B., J. Alloys Comp., 194 (1993), p.189.Google Scholar
8. Ninomiya, H., Koiwa, M., Minonishi, Y. and Ono, S., Trans. Jpn. Inst. Met., 24 (1983), p.665.Google Scholar
9. Rosato, V., Guillopé, M. and Legrand, B., Phil. Mag., A59 (1989), p.251.Google Scholar
10. Cleri, F. and Rosato, V., Phys. Rev., B48 (1993), p.14051.Google Scholar
11. Willaime, F. and Massobrio, C., Phys. Rev. Lett., 63 (1989), p.2244.Google Scholar
12. Massobrio, C., Pontikis, V. and Martin, G., Phys. Rev. Lett, 62 (1989), p.1142.Google Scholar
13. Rosato, V. and Massobrio, C., J. Alloys Comp., 194 (1993), p.439.Google Scholar
14. Rosato, V. and Cleri, F., J. Non-cryst. Solids., 144 (1992), p.187.Google Scholar
15. Warburton, W.K. and Turnbull, D., in Diffusion in Solids: Recent Developments, edited by Novick, A.S. and Burton, J.J., Academic Press, New York, 1975,p.171.Google Scholar
16. Frenkel, D. and Ladd, A.J.C., J. Chem. Phys., 81 (1984), p.3188.Google Scholar
17. Highmore, R.J., Philos. Mag., B62 (1990), p.455.Google Scholar
18. Egami, T., Maeda, K. and Vitek, V., Philos. Mag., A4l (1980), p.883;Google Scholar
Srolovitz, D., Maeda, K., Vitek, V. and Egami, T., Philos. Mag. A44 (1981) p.847.Google Scholar