Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:15:52.140Z Has data issue: false hasContentIssue false

A Molecular Dynamics Study of the Rotational Dynamics and Polymerization of C60 in C60-Cubane Crystals

Published online by Cambridge University Press:  01 February 2011

Vitor Coluci
Affiliation:
[email protected], State University of Campinas, Limeira, Brazil
Fernando Sato
Affiliation:
[email protected], State University of Campinas, Campinas, Brazil
Scheila F. Braga
Affiliation:
[email protected], State University of Campinas, Campinas, Brazil
Munir S. Skaf
Affiliation:
[email protected], State University of Campinas, Campinas, Brazil
Douglas S Galvao
Affiliation:
[email protected], State University of Campinas, Campinas, Brazil
Get access

Abstract

Recently, heteromolecular crystals of fullerene C60 and cubane (C8H8) have been synthesized. For some temperatures the C60 molecules are free to rotate whereas cubanes behave like a static bearing in a so-called rotor-stator phases. In this work we report classical and tight-binding molecular dynamics simulations in order to investigate the rotor-stator dynamics and polymerization processes. Our results show that, for 200 K and 400 K, cubane molecules remain basically fixed, presenting only thermal vibrations within the timescale of our simulations, while C60 fullerenes show rotational motions. Fullerenes perform “free” rotational motions at short times (< 1 ps), small amplitude hindered rotational motions (librations) at intermediate times, and rotational diffusive dynamics at long times (> 10 ps). Random copolymerization among cubanes and fullerenes were observed when temperature is increased, leading to the formation of a disordered structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eaton, P. E., Angew. Chem. Int. Ed. Engl. 31, 1421 (1992).Google Scholar
2. Pekker, S., Kováts, É., Oszlányi, G., Bényei, Gy., Klupp, G., Bortel, G., Jalsovszky, I., Jakab, E., Borondics, F., Kamarás, K., Bokor, M., Kriza, G., Tompa, K., Faigel, G., Nature Materials 4, 764 (2005).Google Scholar
3. Kováts, É., Klupp, G., Jakab, E., Pekker, Á., Kamarás, K., Jalsovszky, I., Pekker, S., Phys. Stat. Sol. (b) 243, 2985 (2006).Google Scholar
4. Pekker, S., Kováts, É., Oszlányi, G., Bényei, Gy., Klupp, G., Bortel, G., Jalsovszky, I., Jakab, E., Borondics, F., Kamarás, K., Faigel, G., Phys. Stat. Sol. (b) 243, 3032 (2006).Google Scholar
5. Iwasiewicz-Wabnig, A., Sundqvist, B., Kováts, É., Jalsovszky, I., Pekker, S., Phys. Rev. B 75, 024114 (2007).Google Scholar
6. MacKerell, A. D. Jr., Bashford, D., Bellott, M., Dunbrack, R. L. Jr, Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E. III, Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., J. Phys. Chem. B 102, 3586 (1998).Google Scholar
7. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., Schulten, K., J. Comput. Chem. 26, 1781 (2005).Google Scholar
8. Brünger, A., Brooks, C. B., Karplus, M., Chem. Phys. Lett. 105, 495 (1984).Google Scholar
9. Frenkel, D. and Smit, B., Understanding molecular simulation: from algorithms to applications, Academic Press, San Diego, CA, 2002.Google Scholar
10. Porezag, D., Frauenheim, T., Kohler, T., Seifert, G., Kaschner, R., Phys. Rev. B 51, 12947 (1995).Google Scholar
11. Rurali, R., Hernandez, E., Comput. Mat. Sci. 28, 85 (2003).Google Scholar
12. Sanz-Serna, J. M., Calvo, M. P., Numerical Hamiltonian Problems, Chapman and Hall, New York, 1995.Google Scholar
13. Bond, S. D., Leimkuhler, B. J., Laird, B. B., J. Comput. Phys. 151, 114 (1999).Google Scholar
14. Berne, B. J. and Pecora, R., Dynamic Light Scattering: with applications to Chemistry, Biology, and Physics, Dover Publications, Inc. Mineola, New York, 2000.Google Scholar
15. Coluci, V.R., Sato, F., Braga, S. F., Skaf, M. S., Galvão, D. S., J. Chem. Phys. 129, 064506 (2008).Google Scholar
16. Williams, G., Chem. Soc. Rev. 7, 89 (1978).Google Scholar
17. Li, Z., Anderson, S. L., J. Phys. Chem. A 107, 1162 (2003); and references therein.Google Scholar
18. Martin, H. D., Urbanek, T., Pfohler, P., Walsh, R., J. Chem. Soc. Chem. Commun. 964 (1985).Google Scholar
19. Martin, H. D., Urbanek, T., Walsh, R., J. Am. Chem. Soc. 107, 5532 (1985).Google Scholar
20. Martin, H. D., Pfohler, P., Urbanek, T., Walsh, R., Chem. Ber. 116, 1415 (1983).Google Scholar
21. Han, S., Yoon, M., Berber, S., Park, N., Osawa, E., Ihm, J., Tománek, D., Phys. Rev. B 70, 113402 (2004).Google Scholar