Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:46:58.807Z Has data issue: false hasContentIssue false

Molecular Dynamics Study of the Effect of Magnetic Field on the Static and Dynamical Properties of Two-Dimensional Coulomb Systems

Published online by Cambridge University Press:  10 February 2011

Godfrey Gumbs
Affiliation:
Department of Physics and Astronomy, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10021 The Graduate School and University Center of the City University of New York, 33 West 42 Street, New York, NY 10036.
Girija S. Dubey
Affiliation:
Department of Physics and Astronomy, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10021
Get access

Abstract

Molecular dynamics simulations are used to examine the effect of a uniform perpendicular magnetic field on a two-dimensional (2D) interacting electron system and we analyze how the magnetic field affects the single-particle properties of the system. In this simulation, we include the effect of the magnetic field classically through the Lorentz force. Both the Coulomb interaction and the magnetic field are included directly in the electron dynamics to study their combined effect on the transport properties of the 2D system. Results are presented for the pair correlation function, the mean square displacement and the density correlation function, in the presence and absence of an external magnetic field. Our simulation results, obtained from a first-principles calculation, clearly show that the external magnetic field has no effect on the static properties, but it affects the dynamics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For reviews, see Beenakker, C. W. and van Houten, H. in Quantum Transport in Semiconductor Nanostructures edited by Ehrenreich, H. and Turnbull, D., Solid State Physics vol. 44 I (Academic Press, Boston, 1991);Google Scholar
Ferry, D. K., Prog. Quantum Electron, 16, 251 (1992);Google Scholar
Hansen, W., Kotthaus, J. P. and Merkt, V. in Semiconductors and Semi-metals edited by Willardson, R. K., Bear, A. C. and Weber, E. P. (Academic, San Diego, 1992) vol. 35.Google Scholar
2. Weiss, D., Klitzing, K. v., Ploog, K., and Weimann, G., Europhys. Lett. 8, 179 (1989).Google Scholar
3. Gerhardts, R. R., Weiss, D., and Klitzing, K. v., Phys. Rev. Lett. 63, 1173 (1989).Google Scholar
4. Winkler, R. W., Kotthaus, J. P., and Ploog, K., Phys. Rev. Lett. 62, 1177 (1989).Google Scholar
5. Beton, P. H., Alves, E. S., Main, P. C., Eaves, L., Dellow, M. W., Henini, M., Haughes, O. H., Beaumontana, S. P., Wilkinson, C. D. W., Phys. Rev. B 42, 9229 (1990).Google Scholar
6. Stark, R. W., Phys. Rev. A 135, 1698 (1964).Google Scholar
7. Falicov, L. M. and Sievert, P. R., Phys. Rev. A 138, 88 (1965).Google Scholar
8. Stark, R. W. and Falicov, L. M., Prog. Low. Temp. Phys. 5, 235 (1967).Google Scholar
9. March, N. and Tosi, M. P., Coulomb Liquid (Academic Press, 1992).Google Scholar
10. Yamada, T. and Ferry, D. K., Phys. Rev. B 47, 1444, (1993).Google Scholar
11. Grimes, C. C., Surf. Sci. 73, 379 (1978).Google Scholar
12. Ando, T., Fowler, A. B., and Stern, F., Rev. Mod. Phys. 54, 437 (1982).Google Scholar
13. Hansen, J. P., Levesque, D. and Weiss, J. J., Phys. Rev. Lett. 43, 979 (1979).Google Scholar
14. Totsuji, H. and Kakeya, H., Phys. Rev. A 22, 1220 (1980).Google Scholar
15. Kalia, R. K., Vashishta, P., de Leeuw, S. W. and Rahman, R. J. Phys. B 14, L911 (1981).Google Scholar
16. Gann, R. C., Chakravarty, S. and Chester, G. V., Phys. Rev. B 20, 326 (1979).Google Scholar
17. Dubey, G. S. and Gumbs, G., Phys. Rev. B 56, 2957 (1997).Google Scholar