Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:02:11.485Z Has data issue: false hasContentIssue false

Molecular Dynamics Study of Electron Irradiation Damages in Carbon Nanomaterials

Published online by Cambridge University Press:  01 February 2011

Masaaki Yasuda
Affiliation:
[email protected], Osaka Prefecture University, Department of Physics and Electronics, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan, +81-72-254-9270, +81-72-254-9908
Takashi Majima
Affiliation:
[email protected], Osaka Prefecture University, Department of Physics and Electronics, Sakai, Osaka 599-8531, Japan
Yoshihisa Kimoto
Affiliation:
[email protected], Osaka Prefecture University, Department of Physics and Electronics, Sakai, Osaka 599-8531, Japan
Kazuhiro Tada
Affiliation:
[email protected], Osaka Prefecture University, Department of Physics and Electronics, Sakai, Osaka 599-8531, Japan
Hiroaki Kawata
Affiliation:
[email protected], Osaka Prefecture University, Department of Physics and Electronics, Sakai, Osaka 599-8531, Japan
Yoshihiko Hirai
Affiliation:
[email protected], Osaka Prefecture University, Department of Physics and Electronics, Sakai, Osaka 599-8531, Japan
Get access

Abstract

Molecular dynamics (MD) studies are carried out to investigate the electron irradiation damages in carbon nanomaterials. The interaction between an incident electron and a carbon atom is modeled based on the Monte Carlo method using the elastic scattering cross section. The electron irradiation damages in graphen, graphite, single-walled carbon nanotube (SWNT) and carbon nanopeapod are demonstrated. The cross-links among the nanostructures caused by the knock-on effect are observed as typical damages. The dependence of the damages on the electron primary energy is also shown for the SWNT.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ugarte, D., Nature 359, 707 (1992).Google Scholar
2 Banhart, F. and Ajayan, P. M., Nature 382, 433 (1996).Google Scholar
3 Yasuda, M., Kimoto, Y., Tada, K., Mori, H., Akita, S., Nakayama, Y. and Hirai, Y., Phys. Rev. B 75, 205406 (2007).Google Scholar
4 Wentzel, G., Z. Phys. 40, 590 (1927).Google Scholar
5 Tersoff, J., Phys. Rev. B 37, 6991 (1988).Google Scholar
6 Tersoff, J., Phys. Rev. B 39, 5566 (1989).Google Scholar
7 Brenner, D. W., Phys. Rev. B 42, 9458 (1990).Google Scholar
8 Brenner, D. W., Robertson, D. H., Elert, M. L. and White, C. T., Phys. Rev. Lett. 70, 2174 (1993).Google Scholar
9 Stone, A. J. and Wales, D. J., Chem. Phys. Lett. 128, 501 (1986).Google Scholar
10 Yazyev, O. V., Tavernelli, I., Rothlisberger, U. and Helm, L., Phys. Rev. B 75, 115418 (2007).Google Scholar
11 Pregler, S. K., Hayakawa, T., Yasumatsu, H., Kondow, T. and Sinnott, S. B., Nucl. Instrum. Meth. B 262, 240 (2007).Google Scholar
12 Hu, Y., Irving, D. L. and Sinnott, S. B., Chem. Phys. Lett. 422, 137 (2006).Google Scholar