Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:49:16.490Z Has data issue: false hasContentIssue false

Molecular Dynamics Studies of the Ion Beam Induced Crystallization in Silicon

Published online by Cambridge University Press:  21 February 2011

L.A. Marques
Affiliation:
Chemistry and Materials Science Department, L-268, Lawrence Livermore National Laboratory, Livermore, CA 94551
M.-J. Caturla
Affiliation:
Dept. de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain.
H. Huang
Affiliation:
Dept. de Física Aplicada, Facultat de Ciencies, Universitat d'Alacant, Ap. 99, E-03080 Alacant, Spain.
T. Díaz De La Rubia
Affiliation:
Dept. de Física Aplicada, Facultat de Ciencies, Universitat d'Alacant, Ap. 99, E-03080 Alacant, Spain.
Get access

Abstract

We have studied the ion bombardment induced amorphous-to-crystal transition in silicon using molecular dynamics techniques. The growth of small crystal seeds embedded in the amorphous phase has been monitored for several temperatures in order to get information on the effect of the thermal temperature increase introduced by the incoming ion. The role of ion-induced defects on the growth has been also studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wu, I.W., Chiang, A., Fuse, M., Ovecoglu, L. and Huang, T.Y., J. Appi. Phys. 65, 4036 (1989).Google Scholar
2 Kelton, K.F., Greer, A.L. and Thompson, C.V., J. Chem. Phys. 79, 6261 (1983).Google Scholar
3 Masaki, Y., LeComber, P.G. and Fitzgerald, A.G., J. Appi. Phys. 74, 129 (1993).Google Scholar
4 Im, J.S. and Atwater, H.A., Nucl. Instr. and Meth. B 59, 422 (1991).Google Scholar
5 Spinella, C., Battaglia, A., Priolo, F. and Campisano, S.U., Europhys. Lett. 16, 313 (1991).Google Scholar
6 Caturla, M.J., Díaz de la Rubia, T. and Gilmer, G.H., J. Appi. Phys. 77, 3121 (1995).Google Scholar
7 Stillinger, F.H. and Weber, T., Phys. Rev. B 31, 5262 (1985).Google Scholar
8 Custer, J.S., Thompson, M.O., Jacobson, D.C., Poate, J.M., Roorda, S., Sinke, W.C. and Spaepen, F. in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J.A., BØrgesen, P. and Zuhr, R.A. (Mater. Res. Soc. Proc. 157, Pittsburgh, PA, 1989) pp. 689690.Google Scholar
9 Luedtke, W.D. and Landman, U., Phys. Rev. B 37, 4656 (1988).Google Scholar
10 Cook, S.J. and Clancy, P., Phys. Rev. B 46, 7686 (1993).Google Scholar
11 Marqués, L.A., Caturla, M.-J. and Díaz de la Rubia, T., in preparation.Google Scholar
12 Wang, Z.L., Itoh, N., Matsunami, N. and Zhao, Q.T., Nucl. Instr. and Meth. B 100, 493 (1995).Google Scholar
13 Díaz de la Rubia, T. and Gilmer, G.H., Phys. Rev. Lett. 74, 2507 (1995).Google Scholar
14 Luedtke, W.D. and Landman, U., Phys. Rev. B 40, 1164 (1989).Google Scholar
15 Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. and Jacobson, D.C., J. Appi. Phys. 57, 1795 (1985).Google Scholar
16 Sinke, W.C., Polman, A., Roorda, S. and Stolk, P.A., Appi. Surf. Sci. 43, 128 (1989).Google Scholar
17 Grabow, M.H., Gilmer, G.H. and Bakker, A.F. in Atomic Scale Calculations in Materials Science, edited by Tersoff, J., Vanderbilt, D. and Vitek, V. (Mater. Res. Soc. Proc. 141, Pittsburgh, PA, 1989) pp. 349354.Google Scholar
18 Rimini, E., Ion Implantation: Basics to Device Fabrication (Kluwer Academic Publishers, Dordrech, 1995) p. 177.Google Scholar
19 Heermann, D.W., Computer Simulation Methods in Theoretical Physics, 2nd ed. (Springer-Verlag, Berlin, 1990), p. 55.Google Scholar
20 Spinella, C., Lombardo, S. and Campisano, S.U., Appi. Phys. Lett. 57, 554 (1990).Google Scholar