Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:52:41.994Z Has data issue: false hasContentIssue false

Molecular Dynamics Studies of Semiconductor Thin Films and Interfaces

Published online by Cambridge University Press:  25 February 2011

Marcia H. Grabow
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
George H. Gilmer
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
Get access

Abstract

The structure and stability of thin epitaxial films have been investigated using molecular dynamics computer simulations. One issue of interest is the stability of a smooth film relative to 3-dimensional clusters. The simulation results show that the uniform film is never the lowest energy state for a system with finite misfit. However, the uniform film, produced in a layer-by-layer growth mode, can persist in a metastable state at substantial misfits, e.g. 10% at 1/2 the melting point. This is a result of the large nucleation barrier to the formation of clusters.

The second issue is the quality of the interface between the film and the substrate. At equilibrium, the critical thickness for the introduction of misfit dislocations is larger for films on the diamond cubic (100) substrate than on the (111), and differs from predictions based on continuum mechanics. We find that coherent films remain in metastable equilibrium far beyond the critical misfit calculated for full equilibrium, because a large free energy barrier inhibits the introduction of misfit dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Tully, J. C., Gilmer, G. H., Shugard, M., J. Chem. Phys. 71, 1630 (1979).Google Scholar
(2) Bienfait, M., Seguin, J. L., Suzanne, J., Lerner, E., Krim, J., and Dash, J. G., Phys. Rev. B 29, 983 (1984).Google Scholar
(3) Grabow, M. H. and Gilmer, G. H., Layered Structures and Epitaxy, Gibson, J. M., Osbourn, G. C. and Tromp, R. M., eds., Symposium of the 1985 Fall Meeting of the Materials Research Society, North-Holland, (1986).Google Scholar
(4) Grabow, M. H. and Gilmer, G. H., “Thin Film Growth Modes, Wetting and Cluster Nucleation,” submitted, Surf. Sci.Google Scholar
(5) Gilmer, G. H. and Grabow, M. H., “Models of Thin Film Growth Modes,” J. Metals 39, 19 (1987).Google Scholar
(6) Bruinsma, and Zangwill, A., preprint, and J. Physique 47, 2055 (1986).CrossRefGoogle Scholar
(7) Venables, J. A. and Price, G. L., Epitaxial Growth, Part B, ed. Matthews, J. W., (Academic Press, New York, 1975), chapter 4.Google Scholar
(8). Frank, F. C. and van der Merwe, J. H., Proc. Roy. Soc. (London) A 198, 205 (1949); A198, 216 (1949).Google Scholar
(9) Frank, F. C. and van der Merwe, J. H., Proc. Roy. Soc. (London) A 200, 125 (1949).Google Scholar
(10) van der Merwe, J. H., J. Appl. Phys. 41, 4725 (1970).Google Scholar
(11) Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth 27, 118 (1974).Google Scholar
(12) Matthews, J. W., “Coherent Interfaces and Misfit Dislocations”, Epitaxial Growth, part B, (Academic Press, New York, 1975), chapter 8.Google Scholar
(13) Halicioglu, T., J. Cryst. Growth 29, 40 (1975).Google Scholar
(14) Dodson, B. W., Phys. Rev. B 30, 3545 (1984).CrossRefGoogle Scholar
(15) Dienes, G. H., Sieradzki, K., Paskin, A., and Massoumzadeh, B., Surf. Sci. 144, 273 (1984).CrossRefGoogle Scholar
(16) Dodson, B., Apl. Phys. Lett. 49, 642 (1986).Google Scholar