Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:36:49.907Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of the Structural, Vibrational and Electronic Properties of Amorphous Silicon

Published online by Cambridge University Press:  25 February 2011

R. Biswas
Affiliation:
Microelectronics Research Center, and Department of Physics, Iowa State University, Ames Iowa 50011
I. Kwon
Affiliation:
Microelectronics Research Center, and Department of Physics, Iowa State University, Ames Iowa 50011 Ames Laboratory-U.S. DOE, and Department of Physics, Iowa State University, Ames Iowa 50011
C. M. Soukoulis
Affiliation:
Microelectronics Research Center, and Department of Physics, Iowa State University, Ames Iowa 50011 Ames Laboratory-U.S. DOE, and Department of Physics, Iowa State University, Ames Iowa 50011
Get access

Abstract

Amorphous silicon models have been computer-generated by melt-quenching and film deposition molecular dynamics simulations, employing classical interatomic Si-potentials. The structural, vibrational and electronic properties of these models is described. Dangling-bond gap states are well localized whereas, floating bonds gap states are considerably less localized with wavefunction amplitudes on the neighbors of the five-coordinated atom. In contrast to melt-quenched models, the a-Si films displayed voids, a 15–28% lower density than c-Si, and no five- coordinated atoms. A-Si:H models with 5 and 22% hydrogen, and both monohydride and dihydride species, have also been developed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
Biswas, R. and Hamann, D. R., Phys. Rev. B 36, 6434 (1987).Google Scholar
[3]. Tersoff, J., Phys. Rev. B 37, 6991 (1988), and references therein.Google Scholar
[4]. Car, R. and Parrinello, M., Phys. Rev. Lett. 60, 204 (1988).Google Scholar
[5]. Drabold, D., Fedders, P. A., Sankey, O. F., and Dow, J. D., to be published.Google Scholar
[6]. Biswas, R., Grest, G. S., and Soukoulis, C. M., Phys. Rev. B 36, 7437 (1987).Google Scholar
[7]. Kwon, I., Biswas, R., Grest, G. S., and Soukoulis, C. M., Phys. Rev. B 41, 3678 (1990).Google Scholar
[8]. Luedtke, W. D., and Landman, U., Phys. Rev. B. 40, 11733 (1989), Phys. Rev. B 40, 1164 (1989).Google Scholar
[9]. Pantelides, S. T., Phys. Rev. Lett. 57, 2979 (1986); 58, 1344 (1987).Google Scholar
[10]. Phillips, J. C., Phys. Rev. Lett. 58, 2824 (1987).Google Scholar
[11] . Biswas, R., Kwon, I., Bouchard, A. M., Grest, G. S., and Soukoulis, C. M., Phys. Rev. B 39, 5101 (1989).Google Scholar
[12]. Wooten, F., Winer, K., and Weaire, D. Phys. Rev. Lett. 54, 1392 (1985).Google Scholar
[13]. Yen, R., Liu, J. M., Kurz, H., and Bloembergen, N., Appl. Phys. Lett. 27, 153 (1982).Google Scholar
[14]. Biswas, R., Kamitakahara, W. A., Bouchard, A. M., Soukoulis, C. M., and Grest, G. S., Phys. Rev. Lett. 60, 2280 (1988).Google Scholar
[15]. Biswas, R., Wang, C. Z., Chan, C. T., Ho, K. M. and Soukoulis, , Phys. Rev. Lett. 63, 1491 (1989).Google Scholar
[16]. Fortner, J., Yu, R. Q., and Lannin, J. S., to be published.Google Scholar
[17]. Chadi, D. J., Phys. Rev. B 19, 2074 (1979).Google Scholar
[18]. Ley, L., in “The Physics of Hydrogenated Amorphous Silicon II,” edited by Joannopoulos, J. D. and Lucovsky, G. (Springer-Verlag, Berlin 1984), p 61.Google Scholar
[19]. Fedders, P. A. and Carlsson, A. E., Phys. Rev. B 39, 1134 (1989).Google Scholar
[20]. Biegelsen, D. K. and Stutzmann, M., Phys. Rev. B 33, 3006 (1986).Google Scholar
[21]. Keating, P. N., Phys. Rev. 145, 637 (1966).Google Scholar
[22]. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar