Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:34:08.888Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Porous Silica

Published online by Cambridge University Press:  10 February 2011

J.V.L. Beckers
Affiliation:
Department of Applied Physics, Delft University of Technology, PO Box 5046, 2600 G A, Delft, Netherlands. [email protected], [email protected]
S. W. De Leeuw
Affiliation:
Department of Applied Physics, Delft University of Technology, PO Box 5046, 2600 G A, Delft, Netherlands. [email protected], [email protected]
Get access

Abstract

We describe a new simulation method for the preparation of porous silica and present results from molecular dynamics simulations of the structures obtained. We start from a homogeneous liquid phase with reduced atomic charges. The charges are then slowly rescaled and the atoms start clustering to finally form a porous network. We observe that local ordering precedes formation of long range correlations. We investigate physical properties of porous silica such as porosity, internal surface and fractality. They are in reasonable agreement with experimental data, although internal surface and porosity seem to be systematically larger than those found in adsorption experiments. The vibrational and dielectric power spectra show an enhanced intensity in the low frequency region. These modes can be associated with slow dynamics of clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iler, R.K., The Chemistry of Silica, (John Wiley and Sons, New York, 1979).Google Scholar
2. Jin, C., Luttmer, J.D., Smith, D.M., and Ramos, T.A., MRS Bulletin 22, 39 (1997).Google Scholar
3. Izutsu, H., Mizukami, F., Nair, P.K., Kiyozumi, Y. and Maeda, K., J. Mater. Chem. 7, 767 (1997).Google Scholar
4. Vashishta, P., Kalia, R.K., and Ebbjsö, I., Phys. Rev. B 41, 12197 (1990).Google Scholar
5. Beckers, J.V.L., Lowe, C.P., and de Leeuw, S.W., Molecular Simulation, to appear (1998).Google Scholar
6. Vacher, R., Woigner, T. and Pelous, J., Phys. Rev. B 37 6500 (1988).Google Scholar
7. Freltoft, T., Kjems, J.K. and Sinha, S.K., Phys. Rev. B 33 269 (1986).Google Scholar
8. Sonnefeld, J., Colloid Polym. Sci. 274, 1137 (1996).Google Scholar
9. Wang, S., Liu, H., Zhang, L., and Yao, X., Ferroelectric Lett. 19, 89 (1995).Google Scholar
10. Russ, J.C., Fractal surfaces. Chapters 2 and 3 (Plenum, New York, 1994).Google Scholar
11. Pfeiffner, P., Avnir, D. and Farin, D., J. Stat. Phys. 36, 699 (1984).Google Scholar
12. Fadeev, A.Y., Borisova, O.R., and Lisichkin, G.V., J. Coll. Interf. Sci. 183, 1 (1996).Google Scholar
13. Venketraman, A., J. Coll. Interf. Sci. 183, 289 (1996).Google Scholar
14. Wilson, M., Madden, P.A., Hemmati, M., and Angeli, C.A., Phys. Rev. Lett. 77, 4023 (1996).Google Scholar
15. Sheka, E.F., Markichev, I.V., Khavryuchenko, V.D. and Natkanets, I., J. Struct. Chem. 34 523 (1994).Google Scholar
16. Fontana, A., Rossi, F., Carini, G., D'Angelo, G., Tripodo, G., and Bartolotta, A., Phys. Rev. Lett. 78, 1078 (1997).Google Scholar
17. McQuarrie, D.A., Statistical Mechanics. Chapter 21, (Harper and Row, New York, 1976)Google Scholar
18. Tsuneyuki, S., Tsukada, M., Aoki, H. and Matsui, Y., Phys. Rev. Lett. 61, 869 (1988).Google Scholar
19. Nakano, A., Bi, L., Kalia, R., and Vashishta, P., Phys. Rev. Lett. 71, 85 (1993).Google Scholar