Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:46:17.676Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulations of Diffusive-Ballistic Heat Conduction in Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Junichiro Shiomi
Affiliation:
[email protected], University of Tokyo, Department of Mechanical Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo, N/A, Japan, +81358416408
Shigeo Maruyama
Affiliation:
[email protected], University of Tokyo, Department of Mechanical Engineering, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Get access

Abstract

Heat conduction of finite-length single-walled carbon nanotubes (SWNTs) has been studied by means of non-equilibrium molecular dynamics (MD) simulations. The length-dependence of the thermal conductivity was quantified for a range of nanotube-lengths at room temperature. The length dependence of thermal conductivity exhibits a gradual transition from nearly pure ballistic heat conduction to diffusive-ballistic heat conduction. The results show that the thermal conductivity profile does not converge even beyond a micrometer nanotube-length. Furthermore, the diameter dependence suggests that the phonon diffusion is reduced with the diameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Saito, R., Dresselhaus, G. and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).Google Scholar
2. Berber, S., Kwon, Y-K. and Tomanek, D., Phys. Rev. Lett. 84, 4613 (2000).Google Scholar
3. Yu, C., Shi, L., Yao, Z., Li, D. and Majumdar, A., Nano Lett. 5, 1842 (2006).Google Scholar
4. Pop, E., Mann, D., Wang, Q., Goodson, K. and Dai, H. Nano Lett. 6, 96 (2006).Google Scholar
5. Kim, P., Shi, L., Majumdar, A., and McEuen, P. L., Phys. Rev. Lett. 87, 215502 (2001).Google Scholar
6. Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H. and Shimizu, T., Phys. Rev. Lett. 95, 065502 (2005).Google Scholar
7. Hone, J., Llaguno, M.C., Biercuk, M. J., Johnson, A.T., Batlogg, B., Benes, Z., Fischer, J. E., Appl. Phys. A 74, 339 (2002).Google Scholar
8. Chen, G., Nanoscale Energy Transport and Conversion, Oxford University Press, New York (2005).Google Scholar
9. Maruyama, S., Physica B, 323, 193 (2002).Google Scholar
10. Maruyama, S., Micro. Therm. Eng., 7, 41 (2003).Google Scholar
11. Livi, R. and Lepri, S., Nature, 421, 327 (2003).Google Scholar
12. Mingo, N. and Broido, D. A., Nano Lett. 5, 1221 (2005).Google Scholar
13. Wang, J. and Wang, J-S, Appl. Phys. Lett. 88, 111909 (2006).Google Scholar
14. Brenner, D. W, Phys. Rev. B, 42, 9458 (1990).Google Scholar
15. Yamaguchi, Y. and Maruyama, S., S., Chem. Phys. Lett., 286, 336 (1998).Google Scholar
16. Hone, J., Whitney, M., Piskoti, C., Zettl, A., Phys. Rev. B. 59, R2514 (1999).Google Scholar
17. Yamamoto, T., Watanabe, S., Watanabe, K., Phys. Rev. Lett. 92, 075502 (2004).Google Scholar
18. Mahan, G. D. and Jeon, G. S., Phys. Rev. B, 70, 075405 (2004).Google Scholar
19. Shiomi, J. and Maruyama, S., Phys. Rev. B 73, 205420 (2006).Google Scholar
20. Nose, S., J. Chem. Phys., 81 (1), 511 (1984).Google Scholar
21. Hoover, W. G., Phys. Rev. A, 31, 1695 (1985).Google Scholar