Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:44:28.793Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of the Effect of Interfaces in Melting and Solid-State Amorphization

Published online by Cambridge University Press:  26 July 2012

Dieter Wolf
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
Sidney Yip
Affiliation:
Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Get access

Abstract

A newly developed molecular dynamics code was used to study the effect of free surfaces, grain boundaries and voids in the process of melting. It was found that conventional “thermodynamic melting” occurs via nucleation of the liquid at the extended defects with subsequent growth into the crystal. In the absence of interfaces, or when this transition is kinetically hindered, however, a second type of melting transition can be triggered by an elastic instability first described by Born (“mechanical melting”). It is suggested that the distinct characteristic features associated with the two types of melting are actually observed in solid-state amorphization experiments. A unified thermodynamics-based description, in the form of an extended phase diagram, of melting and solid-state amorphization is proposed which brings out the parallels between these two phenomena and suggests that their underlying causes are apparently the same. By investigating the effect of surface stresses on the structure and elastic behavior of free-standing thin films, we discuss how these concepts need to be modified in thin-film and small-grained materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For recent reviews, see Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986); Solid-State Amorphizing Transformations, R. B. Schwartz and W. L. Johnson, eds., Elsevier Sequoia, Netherlands, 1988; J. Less-Common Met., 140 (1988).Google Scholar
2. Cahn, R. W. and Johnson, W. L., J. Mater. Res. 1, 724 (1986).Google Scholar
3. Richet, P., Nature 331, 56 (1988).Google Scholar
4. Fecht, H. J. and Johnson, W. L., Nature 334, 50 (1989).Google Scholar
5. Okamoto, P. R., Rehn, L. E., Pearson, J., Bhadra, R., and Grimsditch, M., J. Less-Common Met. 140, 231 (1988).Google Scholar
6. Tallon, J. L., Phil. Mag. 39, 151 (1979); J. L. Tallon and W. H. Robinson, Phil. Mag. 36, 741 (1977); J. L. Tallon, J. Phys. Chem. Solids 41, 837 (1984).Google Scholar
7. Wolf, D., Okamoto, P. R., Yip, S.,. Lutsko, J. F. and Kluge, M., J. Mat. Res. 5, 286 (1990).Google Scholar
8. Cormia, R. L., Mackenzie, J. D. and Turnbull, D., J. Appl. Phys. 34, 2239 (1963).Google Scholar
9. Ubbelohde, A. R., Molten State of Matter: Melting and Crystal Structure, Wiley, Chichester, 1978.Google Scholar
10. Daeges, J., Gleiter, H., and Perepezko, J. H., Phys. Lett. A119, 79 (1986); R. W. Cahn, Nature 323, 668 (1986).Google Scholar
11. Cotterill, R. M. J., J. Cryst. Growth 48, 582 (1980).Google Scholar
12. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford, 1962.Google Scholar
13. Boyer, L. L., Phase Transitions 5, 1 (1985).Google Scholar
14. Cahn, R. W., Nature 273, 491 (1978).Google Scholar
15. Cahn, R. W., Nature 323, 668 (1986).Google Scholar
16. Ainslie, N. G., MacKenzie, J. D. and Turnbull, D., J. Phys. Chem. 65, 1718 (1961).Google Scholar
17. Buffat, P. and Borel, U.-P., Phys. Rev. A13, 2287 (1976).Google Scholar
18. Boyce, J. B. and Stutzmann, M., Phys. Rev. Lett. 54, 562 (1985).Google Scholar
19. Rossouw, C. J. and Donnelly, S. E., Phys. Rev. Lett. 55, 2960 (1985).Google Scholar
20. Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983); Phys. Rev. B 29, 6443 (1984).Google Scholar
21. Foiles, S. M., Phys. Rev. B 32, 7685 (1985).Google Scholar
22. Lutsko, J. F., Wolf, D., Phillpot, S. R. and Yip, S., Phys. Rev. B 40, 2841 (1989).Google Scholar
23. Lutsko, J. F., Wolf, D., Yip, S., Phillpot, S. R., and Nguyen, T., Phys. Rev. B 38, 11572 (1988).Google Scholar
24. Wolf, D., J. de Phys. Colloq. C4 46, C4197 (1985).Google Scholar
25. Fręnkel, J., Phys. Z. Sowjetunion 1, 498 (1932).Google Scholar
26. Broughton, J. Q., Gilmer, G. H. and Jackson, K. A., Phys. Rev. Lett. 49, 1496 (1982).Google Scholar
27. Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).Google Scholar
28. Ray, J. and Rahman, A., J. Chem. Phys. 80, 4423 (1984), and Phys. Rev. B 32, 733 (1985).Google Scholar
29. Abraham, F. F., Adv. Phys. 35,1 (1986).Google Scholar
30. Meng, W. J., Okamoto, P. R., Thompson, L. J., Kestel, B. J., and Rehn, L. E., Appl. Phys. Lett. 53, 1820 (1988); P. R. Okamoto and M. Meshii, in Science of Advanced Materials, H. Wiedersich and M. Meshii, eds., ASM, Metals Park, 1990.Google Scholar
31. Yang, W. M. C., Tsakalakos, T., and Hilliard, J. E., J. Appl. Phys. 48, 876 (1977).Google Scholar
32. Clemens, B. M. and Eesley, G. L., Phys. Rev. Lett. 61, 2356 (1988).Google Scholar
33. See, for example, Science of Composite Interfaces, Brandt, R. G. and Fishman, S., eds., Mat. Sci. Eng. B 126 (1990) and references therein.Google Scholar
34. Wolf, D. and Lutsko, J. F., J. Mat. Res. 4, 1427 (1989); Phys. Rev. Lett. 60, 1170 (1988) and J. Appl. Phys. 66, 1961 (1989).Google Scholar
35. Jaszczak, J. A., Phillpot, S. R., and Wolf, D., J. Appl. Phys. 68, 4573 (1990).Google Scholar