Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:57:02.667Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of Sputtering with Mmany-Body Interactions

Published online by Cambridge University Press:  26 February 2011

Davy Y. Lo
Affiliation:
Division of Physics, Mathematics, and Astronomy, 200-36 California Institute of Technology, Pasadena, CA 91125
Tom A. Tombrello
Affiliation:
Division of Physics, Mathematics, and Astronomy, 200-36 California Institute of Technology, Pasadena, CA 91125
Mark H. Shapiro
Affiliation:
Division of Physics, Mathematics, and Astronomy, 200-36 California Institute of Technology, Pasadena, CA 91125
Don E. Harrison Jr.
Affiliation:
Department of Physics, US Naval Postgraduate School, Monterey, CA 93940
Get access

Abstract

Many-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harrison, D. E. Jr., Radiat. Eff. 70, 1 (1983).Google Scholar
2. Girifalco, L. A. and Weizer, V. G., Phys. Rev. 114, 687 (1959).Google Scholar
3. Huber, K. P. and Herzberg, G., Molecular Spectra and Molecular Structure, (Van Nostrand Reinhold Co., New York, 1492).Google Scholar
4. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
5. Garrison, B. J., Winograd, N., Deaven, D. M., Reimann, C. T., Lo, D. Y., Tombrello, T. A., Harrison, D. E. Jr., and Shapiro, M. H., presented at SIMS IV, France, 1987.Google Scholar
6. Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
7. Jackson, D. P., Radiat. Eff. 18, 185 (1973).CrossRefGoogle Scholar
8. Garrison, B. J., Winograd, N., Reimann, C. T., and Harrison, D. E. Jr., Phys. Rev. B36, 3516 (1987).CrossRefGoogle Scholar
9. Garrison, B. J., Winograd, N., Lo, D. Y., Tombrello, T. A., Shapiro, M. H., and Harrison, D. E. Jr., Surf. Sci. 180, L129 (1987).CrossRefGoogle Scholar
10. Kelly, R., Nucl. Instr. and Meth. B18, 388 (1987).Google Scholar
11. Baxter, J. P., Schick, G. A., Singh, J., Kobrin, P. H., and Winograd, N., J. Vac. Sci. Tech. 4, 1218 (1986).CrossRefGoogle Scholar
12. Thompson, M. W., Phil. Mag. 18, 377 (1968).CrossRefGoogle Scholar
13. Sigmund, P., Phys. Rev. 184, 383 (1969).Google Scholar