Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:41:33.018Z Has data issue: false hasContentIssue false

A Molecular Dynamics Simulation of High Strain-rate Deformation in Nanocrystalline Silicon Carbide

Published online by Cambridge University Press:  18 August 2011

Yifei Mo
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI, 53706
Izabela Szlufarska
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, WI, 53706
Get access

Abstract

Multi-million atom molecular dynamics simulations of tensile testing have been performed on nc-SiC. Reduction of grain size promotes simultaneous enhancement of ductility, toughness, and strength. Simulations show that the nc-SiC fails by intergranular fracture preceded by atomic level necking. Atomic diffusion can prevent premature cavitation and failure, and therefore it sets an upper limit on high strain-rate deformations of ceramics. We report a non-diffusional mechanism for suppressing premature cavitation, which is based on unconstrained plastic flow at grain boundaries. In addition, based on the composite's rule of mixture, we estimate Young's modulus of random high-angle grain boundaries in nc-SiC to be about 130 GPa. The effect of temperature and strain rate on mechanical properties is studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Padture, N. P., Journal of the American Ceramic Society 77, 519 (1994).Google Scholar
2. Kim, B., Hiraga, K., Morita, K., and Sakka, Y., Nature 431, 288 (2002).Google Scholar
3. Ippolito, M., Mattoni, A., Colombo, L., and Cleri, F., Applied Physics Letters 87 (2005).Google Scholar
4. Ritchie, R. O., Int. J. Fracture 100, 55 (1999).Google Scholar
5. Chen, D., Sixta, M. E., Zhang, X. F., Johnghe, L. C. D., and Ritchie, R. O., Acta Mater. 48, 4599 (2000).Google Scholar
6. Luecke, W. E., Wiederhorn, S. M., Hockey, B. J., Krause, R. F., and Long, G. G., Journal of the American Ceramic Society 78, 2085 (1995).Google Scholar
7. Evans, A. G., Rice, J. R., and Hirth, J. P., J. Amer. Ceram. Soc. 63, 368 (1980).Google Scholar
8. Ovid'ko, I. A., Rev. Adv. Mater. Sci. 10, 89 (2005).Google Scholar
9. Dyson, B. F., Metal Science 10, 349 (1976).Google Scholar
10. Wolf, D., Yamakov, V., Phillpot, S. R., Mukherjee, A., and Gleiter, H., Acta Mater. 53, 1 (2005).Google Scholar
11. Wan, J., Duan, R., Gash, M. J., and Mukherjee, A., J. Am. Ceram. Soc. 89, 274 (2006).Google Scholar
12. Szlufarska, I., Nakano, A., and Vashishta, P., Science 309, 911 (2005).Google Scholar
13. Szlufarska, I., Kalia, R. K., Nakano, A., and Vashishta, P., Appl. Phys. Lett. 86, 021915 (2005).Google Scholar
14. Keblinski, P., Phillpot, S. R., Wolf, D., and Gleiter, H., Phys. Rev. Lett. 77, 2965 (1996).Google Scholar
15. Szlufarska, I., Kalia, R. K., Nakano, A., and Vashishta, P., Phys. Rev. B 71, 174113 (2005).Google Scholar
16. Tang, M. and Yip, S., Journal of Applied Physics 76, 2719 (1994).Google Scholar
17. Liao, F., Girshick, S. L., Mook, W. M., Gerberich, W. W., and Zachariah, M. R., Appl. Phys. Lett. 86, 171913 (2005).Google Scholar
18. Dieter, G. E. “Mechanical Metallurgy”, McGraw-Hill series in materials science and engineering (1969).Google Scholar