Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:19:25.105Z Has data issue: false hasContentIssue false

Molecular dynamics simulation of ds-DNA on a gold surface at low surface coverage

Published online by Cambridge University Press:  31 January 2011

One-Sun Lee
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, Illinois, United States
George C. Schatz
Affiliation:
[email protected], Northwestern University, Chemistry, Evanston, Illinois, United States
Get access

Abstract

Molecular dynamics methods have been used to study the conformation of ds-DNA on a gold surface for low surface coverage at the atomistic level. Each ds-DNA strand, which is attached to the [111] surface of gold with a -S(CH2)6- linker, is found to be nearly perpendicular to the surface and maintaining the Watson-Crick B-DNA conformation. The tilt angle between the ds-DNA and an axis normal to the gold surface is 7.3 (+/-) 2.2 degree. The concentration of counterions around the ds-DNA is increased by a factor of 1.8 relative to the bulk, which is significantly lower than in our previous simulations of ds-DNA at high surface coverage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Storhoff, J. J.; Mirkin, C. A. Chem. Rev. 1999, 99, 1849.Google Scholar
(2) Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959.Google Scholar
(3) Duggan, D. J.; Bittner, M.; Chen, Y.; Meltzer, P.; Trent, J. M. Nat. Genet. 1999, 21, 10.Google Scholar
(4) Debouck, C.; Goodfellow, P. N. Nat. Genet. 1999, 21, 48.Google Scholar
(5) Lee, O.-S.; Schatz, G. C. J. Phys. Chem. C 2009, 113, 2316.Google Scholar
(6) Lee, O.-S.; Schatz, G. C. J. Phys. Chem. C 2009, 113, 15941.Google Scholar
(7) Hurst, S. J.; Hill, H. D.; Mirkin, C. A. J. Am. Chem. Soc. 2008, 130, 12192.Google Scholar
(8) Hill, H. D.; Macfariane, R. J.; Senesi, A. J.; Lee, B.; Park, S. Y.; Mirkin, C. A. Nano. Lett. 2008, 8, 2341.Google Scholar
(9) Akola, J.; Walter, M.; Whetten, R. L.; Hakkinen, H.; Gronbeck, H. J. Am. Chem. Soc. 2008, 130, 3756.Google Scholar
(10) Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 3754.Google Scholar
(11) Zhu, M.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. J. Am. Chem. Soc. 2008, 130, 5883.Google Scholar
(12) Pearlman, D. A.; Case, D. A.; Caldwell, J. W.; Ross, W. S.; Cheatham, T. E.; Debolt, S.; Ferguson, D.; Seibel, G.; Kollman, P. Comput. Phys. Commun. 1995, 91, 1.Google Scholar
(13) Agrawal, P. M.; Rice, B. M.; Thompson, D. L. Surf. Sci. 2002, 515, 21.Google Scholar
(14) Hautman, J.; Klein, M. L. J. Chem. Phys. 1989, 91, 4994.Google Scholar
(15) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998, 102, 3586.Google Scholar
(16) Grubmuller, H. SOLVATE, ; 1.2 ed.; Theoretical Biophysics Group, Institute for Medical Optics, Ludwig-Maximilian University: Munich, 1996.Google Scholar
(17) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33.Google Scholar
(18) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.Google Scholar
(19) Mackerell, A. D.; Wiorkewiczkuczera, J.; Karplus, M. J. Am. Chem. Soc. 1995, 117, 11946.Google Scholar
(20) Kale, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. J. Comput. Phys. 1999, 151, 283.Google Scholar
(21) Martyna, G. J.; Tobias, D. J.; Klein, M. L. J. Chem. Phys. 1994, 101, 4177.Google Scholar
(22) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.Google Scholar
(23) Andersen, H. C. J. Comput. Phys. 1983, 52, 24.Google Scholar
(24) Wong, K.-Y.; Pettitt, B. M. Biopolymers 2003, 73, 570.Google Scholar
(25) Dong, L. Q.; Zhou, J. Z.; Wu, L. L.; Dong, P.; Lin, Z. H. Chem. Phys. Lett. 2002, 354, 458.Google Scholar
(26) Sam, M.; Boon, E. M.; Barton, J. K.; Hill, M. G.; Spain, E. M. Langmuir 2001, 17, 5727.Google Scholar
(27) Barhoumi, A.; Zhang, D.; Halas, N. J. J. Am. Chem. Soc. 2008, 130, 14040.Google Scholar
(28) Jin, R.; Wu, G.; Li, Z.; Mirkin, C. A.; Schatz, G. C. J. Am. Chem. Soc. 2003, 125, 1643.Google Scholar
(29) Seferos, D. S.; Prigodich, A. E.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Nano Lett. 2009, 9, 308.Google Scholar