Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:08:09.873Z Has data issue: false hasContentIssue false

Molecular Dynamics of Side Chain Liquid Crystalline Polysiloxanes

Published online by Cambridge University Press:  10 February 2011

G. M. Podojil
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903
B. L. Farmer
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903
T. J. Bunning
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433
R. Pachter
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433
W. W. Adams
Affiliation:
Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433
Get access

Abstract

Molecular dynamics simulations have been used to characterize the development and longevity of associations between cholesterol and biphenyl mesogens when attached to linear siloxane oligomers by flexible spacer groups. Single substituents, alternating substituents, and diblock and triblock arrangements of the substituents were considered. The backbone and spacer groups allow sufficient flexibility that long-lived associations between cholesterol mesogens form quite rapidly, as do more fluid associations between biphenyl and cholesterol mesogens. The study of the individual mesogen interactions and how these lead to larger scale aligned structures has provided insight into the nature of the liquid crystalline state in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Finkelmann, H., Happ, M., Portugal, M., and Ringsdorf, H., Makromol. Chem., 179, 2541 (1978).Google Scholar
2. Finkelmann, H., Ringsdorf, H., and Wendorff, J. H., Makromol. Chem., 179, 273 (1978).Google Scholar
3. Finkelmann, H., and Rehage, G., Makromol. Chem., Rapid Comm., 1, 31 (1980).Google Scholar
4. Ringsdorf, H., and Schneller, A., Br. Polym. J., 13, 43 (1980).Google Scholar
5. Ringsdorf, H., and Schneller, A., Makromol. Chem., Rapid Comm., 3, 557 (1982).Google Scholar
6. Bunning, T. J., Klei, H. E., Koberstein, J. T., Samulski, E. T., Adams, W. W., and Crane, R. L., U. S. Air Force Technical Report #WL-TR-92–4051, (1992).Google Scholar
7. Gresham, K. D., McHugh, C. M., Bunning, T. J., Crane, R. L., Klei, H. E., and Samulski, E. T., J. Polym. Sci. A: Polym. Chem., 32, 2039 (1994).Google Scholar
8. Freidzon, Y. S., Tropsha, Y. G., Tsukruk, V. V., Shilov, V. V., Shibayev, V. P., and Lipatov, Y. S., Polym. Sci. U.S.S.R., 29, 1505 (1987).Google Scholar
9. Patnaik, S. S., Pachter, R., Bunning, T. J., Crane, R. L., and Adams, W. W., Liq. Cryst., 16, 911 (1994).Google Scholar
10. Socci, E. P., Farmer, B. L., Pachter, R., Adams, W. W., and Bunning, T. J., U. S. Air Force Technical Report #WL-TR-91–4137, (1992).Google Scholar
11. Pachter, R., Bunning, T. J., and Adams, W. W., Comp. Polym. Sci., 1, 179 (1991).Google Scholar
12. Podojil, G. M., Farmer, B. L., Adams, W. W., Polymer, in press.Google Scholar
13. SYBYL Molecular Modeling Software and Manuals, Tripos Associates, Inc.St. Louis, MO (1992).Google Scholar
14. Clark, M., Cramer, R. D. III, and Opdenbosch, N. Van, J. Comp. Chem., 10, 982 (1989).Google Scholar
15. Socci, E. P., Master's thesis, University of Virginia Charlottesville, VA (1993).Google Scholar