Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T07:29:09.874Z Has data issue: false hasContentIssue false

Molecular Dynamics Based Study on Ductility Enhancement Effect of Nano-scale Void in Fine-grained Metallic Materials

Published online by Cambridge University Press:  11 July 2012

Shin Taniguchi
Affiliation:
Department of Engineering Mechanics and Energy, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
Toshihiro Kameda
Affiliation:
Faculty of Engineering, Information and Systems, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
Toshiyuki Fujita
Affiliation:
College of Engineering Systems, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
Get access

Abstract

In fine-grained metallic materials, the dominant grain boundary (GB) process, such as dislocation emission, dislocation absorption, and dislocation pile-up, causes non-uniform deformation, which results in high yield stress and low ductility. When a nano-scale void is introduced, the dislocation activity enhancement around the void could inhibit GB fracture and enhance ductility. In this study, by considering nanocrystalline Cu models, the influence of an intragranular nano-scale void on the fracture process has been investigated through molecular dynamics simulation. The dependence of ductility enhancement on the grain size and void size has especially been discussed at low and room temperatures. Sufficient dislocation activity enhancement accompanied by optimal void growth causes a fracture mode transition from GB fracture to transgranular fracture. While the ductility enhancement strongly depends on the void size at low temperature, it depends on the grain size at room temperature. The strong dependence of ductility enhancement on the temperature is found in the case of relatively small grains.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kumar, K.S., Swygenhoven, H.V., and Suresh, S., Acta Mater. 51, 5743 (2003).10.1016/j.actamat.2003.08.032Google Scholar
2. Cheng, S., Ma, E., Wang, Y.M., Kecskes, L.J., Youssef, K.M., Koch, C.C., Trociewitz, U.P., and Han, K., Acta Mater. 53, 1521 (2005).10.1016/j.actamat.2004.12.005Google Scholar
3. Liu, J., Nie, A., Dong, C., Wang, P., Wang, H., Fu, M., and Yang, W.. Mater. Lett. 65, 2769 (2011).10.1016/j.matlet.2011.05.095Google Scholar
4. Bringa, E.M., Traiviratana, S., and Meyers, M.A., Acta Mater. 58, 4458 (2010).10.1016/j.actamat.2010.04.043Google Scholar
5. Victoria, M., Baluc, N., Bailat, C., Dai, Y., Luppo, M.I., Schäublin, R., and Singh, B.N., J. Nucl. Mater. 276, 114 (2000).10.1016/S0022-3115(99)00203-2Google Scholar
6. de la Rubia, T. D., Zbib, H.M., Khraishi, T.A., Wirth, B.D., Victoria, M., and Caturla, M.J., Nature 406, 871 (2000).10.1038/35022544Google Scholar
7. Neishi, K., Horita, Z., and Langdon, T.G., Mater. Sci. Eng., A 352, 129 (2003).10.1016/S0921-5093(02)00868-7Google Scholar
8. Zhao, K.J., Chen, C.Q., Shen, Y.P., and Lu, T.J., Comput. Mater. Sci. 46, 749 (2009).10.1016/j.commatsci.2009.04.034Google Scholar
9. Kameda, T. and Zhang, B.R., Mater. Sci. Forum 654656, 1582 (2010).10.4028/www.scientific.net/MSF.654-656.1582Google Scholar
10. Taniguchi, S. and Kameda, T., MRS Online Proc. Libr. 1297, mrsf10-1297-p03-20 (2011).10.1557/opl.2011.559Google Scholar
11. Sun, P.L., Cerreta, E.K., Bingert, J.F., Gray, G.T. III, and Hundley, M.F., Mater. Sci. Eng., A 464, 343 (2007).10.1016/j.msea.2007.02.007Google Scholar
12. Osetsky, Y.N. and Bacon, D.J., Mater. Sci. Eng., A 400401, 374 (2005).10.1016/j.msea.2005.02.083Google Scholar
13. Daw, M.S. and Baskes, M.I., Phys. Rev., B 29, 6443 (1984).10.1103/PhysRevB.29.6443Google Scholar
14. Kekchber, C.L., Plimpton, S.J., and Hamilton, J.C., Phys, Rev., B 58, 85 (1998).Google Scholar
15. Honeycutt, D.J. and Andersen, H.C., J. Phys. Chem. 91, 4950 (1987).10.1021/j100303a014Google Scholar
16. Fan, G.J., Choo, H., Liaw, P.K., and Lavernia, E.J., Mater. Sci. Eng., A 409, 243 (2005).10.1016/j.msea.2005.06.073Google Scholar
17. Traiviratana, S., Bringa, E.M., Benson, D.J., and Meyers, M.A., Acta Mater. 56, 3874 (2008).10.1016/j.actamat.2008.03.047Google Scholar