Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-04T17:23:26.707Z Has data issue: false hasContentIssue false

Molecular Design of Nonlinear Optical Polymers for Photonic Device Applications

Published online by Cambridge University Press:  16 February 2011

Toshikuni Kaino
Affiliation:
NTT Opto-electronics Laboratories, Morinosato, Atsugi-shi, Kanagawa, 243–01, Japan
Naoki Ooba
Affiliation:
Tokai, Naka-gun, Ibaraki, 319–11 Japan
Satoru Tomaru
Affiliation:
Tokai, Naka-gun, Ibaraki, 319–11 Japan
Takashi Kurihara
Affiliation:
Tokai, Naka-gun, Ibaraki, 319–11 Japan
Takakazu Yamamoto
Affiliation:
Tokyo Institute of Technology, Nagatsuta, Yokohama-shi, Kanagawa, 227 Japan
Get access

Abstract

Molecular design of processable nonlinear optical (NLO) polymers is discussed for applications to devices such as ultrafast optical switches. Channel waveguides must be fabricated in order to develop polymeric NLO switching devices that can be driven with lower laser power. For these purposes, we propose molecular structures that reduce attenuation loss and allow the development of highly processable NLO polymers. Third-order nonlinear optical properties, χ(3), of the novel NLO polymers are around 10−10 esu in the 1.5 μm wavelength region. Even in off-resonant regions, the χ(3) values are around 5 × 10−11 esu. Single Mode channel waveguides of the polymers are fabricated using a standard photo-process. Attenuation loss through a film and also for a single mode waveguide at 1.32 μm wavelength is Measured. Nonlinear optical properties of novel, processable, heteroaromatic polymers with large χ(3) are also discussed. Several types of heteroaromatic polymers are developed with a structure in which π-electron excessive heteroaromatic compounds and π-electron deficient heteroaromatic compounds are combined to induce strong nonlinearity. The charge transfer between heteroaromatic rings on the π-conjugated sequences is thought to influence the properties of certain excited states that enhance χ(3) These polymers have excellent potential for use in fabrication of optical switching devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Photonic Switching 2. edited by Toda, K. and Hinton, H.S., Springer Series in Electronics and Photonics, Vol. 29, (Springer-Verlag Berlin, Heidelberg, 1990)Google Scholar
2. Chemia, D.S. and Zyss, J. Eds., Nonlinear Optical Properties of Organic Molecules and Crystals; (Academic Press, New York, 1987)Google Scholar
3. Kaino, T. and Tomaru, T., Advanced Mat. 5, 172 (1993)Google Scholar
4. Spangler, C.W., Hall, T.J., Havelka, K.O., Polis, D.W., Sapochak, L.S. and Dalton, L.R., SPIE, 1337. 125 (1990)Google Scholar
5. Yang, C-J. and Jenekhe, S.A.; Materials Research Society Symposium Proceedings. vol.247, pp247252, Eds. Chiang, L.Y., Garito, A.F., Sandman, D.J. (MRS, Pittsburgh, 1992)Google Scholar
6. Kurihara, T., Kaino, T., Zhou, Z.-h., Kanbara, T. and Yamamoto, T., Electron. Lett., 28, 681 (1992)Google Scholar
7. Kubodera, K. and Kaino, T., in Nonlinear optics of organics and semiconductors edited by Kobayashi, T., (Springer Proceedings in Physics, Springer-Verlag Berlin, Heidelberg, 1989), Vol 36, pl63.Google Scholar
8. Kobayashi, H. et al; Tech. Dig. 1990 Int. Top. Meet, on Photon. Switch., 313C-3, 149 (1990)Google Scholar
9. Buchalter, B. and Meredith, G.R., Appl. Opt., 21, 3221 (1982)CrossRefGoogle Scholar
10. Asobe, M., Kanamori, T., Kobayashi, H. and Itoh, H., Opt. Lett., 18, 1056 (1993)Google Scholar
11. Kanbara, H., Kobayashi, H., Kubodera, K., Kurihara, T. and Kaino, T., Appl. Phys. Lett., 61, 2290 (1992)Google Scholar
12. Tomaru, S., Hikita, M., Kurihara, T., Shuto, Y. and Kaino, T., Electron. Lett., submitted for publication (1993)Google Scholar
13. Hikita, M., Shuto, Y., Amano, M., Yoshimura, R., Tomaru, S. and Kozawaguchi, H., Appl. Phys. Lett., 63, 1161 (1993)CrossRefGoogle Scholar
14. Kaino, T., Kanbara, H., Kurihara, T., Zhou, Z.-h., Shimura, M. and Yamamoto, T., J. Photopolymer., 6, 239 (1993)CrossRefGoogle Scholar
15. Zhou, Z.-h., Maruyama, T., Kanbara, T., Ikeda, T., Ichimura, K., Yamamoto, T. and Tokuda, K., Chem. Soc, Chem. Commun., 1991, 1210 Google Scholar
16. Agrawal, G.P., Cojan, C. and Flytzanis, C., Phys. Rev., B, 17, 776 (1978)CrossRefGoogle Scholar
17. Kajzar, F., Ruani, G., Ttaliani, C. and Zambori, R., Synth. Met., 37, 223 (1990)Google Scholar
18. Yamamoto, T., Takagi, M., Kizu, K., Maruyama, T., Kubota, K., Kanbara, H., Kurihara, T. and Kaino, T., Chem. Commun., 1993. 797 Google Scholar
19. Yamamoto, T., Shimura, M., Osakada, K. and Kubota, K., Chem. Lett., 1992. 1003 Google Scholar