Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:43:52.287Z Has data issue: false hasContentIssue false

Molecular Clusters of 3D and Lower Magnetic Dimensionality

Published online by Cambridge University Press:  28 February 2011

G. C. Papaefthymiou*
Affiliation:
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

Controlled polymerization of iron leads to the synthesis of molecular clusters of ever-increasing size, tending to extended structures. Polymerization of oxo-bridged octahedrally coordinated iron leads to clusters with 3D magnetic interactions between iron ions, while sulfide- and selenide-bridged tetrahedrally coordinated iron ions produce clusters of lower magnetic dimensionality. The magnetic properties of the resulting large molecular clusters with N ≥ 17 (where N = the number of iron ions in the cluster) are being investigated for the presence of collective magnetic correlations associated with the solid state.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carlin, L.R., Magnetochemistry. (Springer-Verlag, 1986).Google Scholar
2. Kittel, C., Introduction to Solid State Physics. (John Wiley & Sons, NY, 1976)Google Scholar
3. de Jongh, L.J. and Miedema, A.R., Adv. Phys. 23, (1974).Google Scholar
4. Demuynch, J., Rhomer, M.M., Stich, A., and Veillard, A., J. Chem. Phys. 75, 3443 (1981);Google Scholar
Messmer, R.P., Knudson, S.K., Johnson, K.H., Diamond, J.B., and Yang, C. Y., Phys. Rev. B 13, 1396 (1976);Google Scholar
Baetzold, R.C. and Mack, R.E., J. Chem. Phys. 62, 1513 (1975);Google Scholar
Yang, C.Y., Johnson, K.H., Salahub, D.R., Kaspar, J., and Messmer, R.P., Phys. Rev. B 24, 5673 (1981);Google Scholar
Lee, K., Callaway, J., and Dhar, S., Phys. Rev. B 30, 1724 (1984).Google Scholar
5. des Cloizeaux, J. and Pearson, J.J., Phys. Rev. 128, 2131 (1962);Google Scholar
Bonner, J.C. and Fisher, M.E., ibid., 135, A640 (1964);Google Scholar
Griffiths, R.B., ibid., 135, A659 (1964).Google Scholar
6. Brown, W.F. Jr., J. Appl. Phys. Suppl. to 30 (4), 1305 (1959).Google Scholar
7. Mørup, S., Dumesic, J.A., and Topsøe, H., in Applications of Mössbauer Spectroscopy. Vol. 2, edited by Cohen, R.L. (Academic Press, NY, 1980);Google Scholar
Thomas, M.F. in Møssbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, edited by Long, G.T. (Plenum Press, 1987) p. 209.Google Scholar
8. Gorun, S.M., Papaefthymiou, G.C., Frankel, R.B., and Lippard, S.J., J. Am. Chem. Soc. 109, 3337 (1987).Google Scholar
9. Papaefthymiou, G.C., Proceedings of the ONR Contractor’s Meeting on the Physics, Chemistry and Materials Science of Clusters, Lake Arrowhead, CA, 1990.Google Scholar
10. Lippard, S.J., Angew. Chem. Int. Ed. Engl. 27, 344 (1988).Google Scholar
11. Micklitz, W. and Lippard, S.J., J. Am. Chem. Soc. 111, 6856 (1989).Google Scholar
12. You, J.F., Snyder, B.S., Papaefthymiou, G.C., and Holm, R.H., J. Am. Chem. Soc. 112, 1067 (1990).Google Scholar
13. You, J.F. and Holm, R.H., submitted to Inorg. Chem.Google Scholar
14. Greenwood, N.N. and Gibb, T.C., Mössbauer Spectroscopy. (Chapman and Hall, Ltd., London, 1971).Google Scholar
15. Murray, K.S., Coord. Chem. Rev. 12, 1 (1974).Google Scholar
16. Micklitz, W., Mckee, V., Papaefthymiou, G.C., Rardin, R.L., and Lippard, S.J., in preparation.Google Scholar
17. Rancourt, D.G., Hyp. Int. 40, 183 (1988).Google Scholar