Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:21:44.994Z Has data issue: false hasContentIssue false

Molecular Architecture and its role in Silica Sol-Gel Polymerization

Published online by Cambridge University Press:  28 February 2011

P. C. Cagle
Affiliation:
School of Chemical Sciences and Materials Research Laboratory, University of Illinois, Urbana, IL 61801
W. G. Klemperer
Affiliation:
School of Chemical Sciences and Materials Research Laboratory, University of Illinois, Urbana, IL 61801
C. A. Simmons
Affiliation:
School of Chemical Sciences and Materials Research Laboratory, University of Illinois, Urbana, IL 61801
Get access

Abstract

Sol-gel polymerization of [Si8O12](OCH3)8 in CH3CN under neutral conditions yields very high surface area (SBET > 900 m2/g) xerogels. This property is seen to result from the structure of the gel on the molecular level. According to N2 adsorption studies, model studies, and TEM studies, the large size and rigidity of the cubic [Si8O12] core structure leads to polymers whose rigidity inhibits extensive crosslinking of the type observed in orthosilicate derived xerogels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strawbridge, I., in Chemistry of Glasses, edited by Paul, A., 2nd Ed (Chapman and Hall, New York, 1990), pp 5185.Google Scholar
2. Brinker, C. J., and Scherer, G. W., Sol-Gel Science. the Physics and Chemistry of SolGel Processing, (Academic Press, Inc., Boston, 1990).Google Scholar
3. Day, V. W., Klemperer, W. G., Mainz, V. V., and Millar, D. M., J. Am Chem. Soc. 107, 8262 (1985).Google Scholar
4. a) Irwin, A. D., Holmgren, J. S., and Jonas, J., Mat. Lett. 6, 25 (1987);Google Scholar
b) Yamane, M., Aso, S., and Sakaino, T., J. Mat. Sci. 14, 607 (1979);Google Scholar
c) Yamane, M., Aso, S., and Sakaino, T., J. Mat. Sci. 13, 865 (1978).Google Scholar
5. Bailey, J. K., Nagase, T., Broberg, S. M., and Mecartney, M. L., J. Non-Cryst. Sol. 109, 198 (1989).Google Scholar
6. a) Nogami, M. and Moriya, Y., J. Non-Cryst. Sol. 37, 191 (1980);Google Scholar
b) Brinker, C. J., Keefer, K. D., Schaefer, D. W., and Ashley, C. S., J. Non-Cryst. Sol. 48, 47 (1982).Google Scholar
7. Klemperer, W. G. and Ramamurthi, S. D. in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 121, Pittsburgh, PA 1988) pp. 113.Google Scholar
8. Klemperer, W.G. and Ramamurthi, S. D., J. Non-Cryst. Sol., in press.Google Scholar
9. Zukoski, C.F., Chow, M. K., Bogush, G. H., and Look, J. L., these proceedings.Google Scholar
10. Schaefer, D.W., MRS Bull. 13, 22 (1988).Google Scholar
11. Keefer, K.D. in Silicon-Based Polymer Science: A Comprehensive Resource, edited by Zeigler, J. M. and Gordon, F. W. (Adv. Chem. Ser. 224.; Am. Chem. Soc., Washington, DC 1990) pp. 228240.Google Scholar
12. Schaefer, D.W., Science 243, 1023 (1989).Google Scholar
13. Kelts, L.W., Effinger, N. J., and Melpoder, S. M., J. Non-Cryst. Sol. 83, 353 (1986).Google Scholar
14. Frye, C.L. and Collins, W. T., J. Am. Chem. Soc. 92, 5586 (1970).Google Scholar
15. Agaskar, P. A., Day, V. W., and Klemperer, W. G., J. Am. Chem. Soc. 109, 5554 (1987).Google Scholar
16. Smolin, Yu. I., Shepelev, Yu. F., and Pomes, R., Khim. Silik. Oksidov 1982, 68.Google Scholar
17. Ruben, G.C., J. Electron Microsc. Tech., 13, 335 (1989).Google Scholar