Published online by Cambridge University Press: 21 February 2011
The design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-π-A units bridged by methylene groups. These molecules were synthesized such that four D-π-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d33, and the average molecular alignment, ψ. We find a value of d33 = 60 pm/V at a fundamental wavelength of 890 nm, and ψ˜ 36° with respect to the surface normal.