Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:32:00.606Z Has data issue: false hasContentIssue false

A Modified Extended Hückel Calculations For Q1D-Graphites

Published online by Cambridge University Press:  22 February 2011

D. Raković
Affiliation:
Faculty of Electrical Engineering, P.O. Box 816, 11001 Belgrade, Yugoslavia
R. Kostić
Affiliation:
Institute of Physics, P.O. Box 57, 11001 Belgrade, Yugoslavia
S. Krstić
Affiliation:
Faculty of Electrical Engineering, P.O. Box 816, 11001 Belgrade, Yugoslavia
I. Davidova
Affiliation:
V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry, USSR Academy of Science, V-344 Moscow, USSR
B. L. Fayfel
Affiliation:
V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry, USSR Academy of Science, V-344 Moscow, USSR
L. A. Gribov
Affiliation:
V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry, USSR Academy of Science, V-344 Moscow, USSR
Get access

Abstract

In this paper we have computed electronic density of states for several Q1D graphites: polyacene (PA), polyacenacene (PAA), polyphenanthrene (PP), polyphenanthrophenanthrene (PPhP), and polyperinaphthalene (PPN). The modified extended Hiickel method for finite Q1D chains has been adopted. The change of the electronic properties due to the growth of the Q1D-graphites toward the two-dimensional direction, starting from trans-polyacetylene, cis-polyacetylene or poly(p-phenylene), is discussed. Our calculations show that PA, PAA, and PPN are intrinsic conductors, while PP and PPh are semiconductors with energy gaps of 1,4 eV and 0,8 eV, respectively. The comparison with other computational results is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoffman, R., J. Chem. Phys. 39, 1397 (1963).CrossRefGoogle Scholar
2. Gribov, L.A., Theory of Infrared Spectra of Polymers (Nauka, Moscow, 1977), in Russian.Google Scholar
3. Krebs, G., Foundations of Cristalochemistry of Unorganic Compounds (Mir, Moscow, 1971), in Russian.Google Scholar
4. Vol'kenstein, M.V., Gribov, L.A., Elyashevich, M.A., and Stepanov, B.I., Molecular Vibrations, 2nd ed. (Nauka, Moscow, 1972), in Russian.Google Scholar
5. Bredas, J.L., Chance, R.R., Baughman, R.H., J. Chem. Phys. 76, 3673 (1982).Google Scholar
6. Gubanov, V.A., Zhukov, V.P., and Litinskii, A.O., Semiempirical Methods of Molecular Orbitals in Quantum Chemistry (Nauka, Moscow, 1976), in Russian.Google Scholar
7. Yamabe, T., Tanaka, K., Ohzeki, K., Yata, S., Sol. St. Comm. 44, 823 (1982).Google Scholar
8. Tanaka, K., Ohzeki, K., Nankai, S., Yamabe, T., Shirakawa, H., J. Phys. Chem. Solids 44, 1069 (1983).Google Scholar
9. Tanaka, K., Ueda, K., Koike, T., Yamabe, T., Sol. St. Comm. 51, 943 (1984).Google Scholar
10. Tanaka, K., Koike, T., Ueda, K., Ohzeki, K., Yamabe, T., Yata, S., Synth. Met. 11, 61 (1985).Google Scholar
11. Fincher, R. Jr., Ozaki, M., Tanaka, M., Peebles, D., Lauchlan, L., Heeger, A.J., McDiarmid, A.G., Phys. Rev. B 20, 1589 (1979).Google Scholar
12. Shacklette, L.W., Eckhardt, H., Chance, R.R., Miller, G.G., Ivory, D.M., Baughman, R.H., J. Chem. Phys. 73, 4098 (1980).CrossRefGoogle Scholar
13. Kertész, M., Adv. Quantum Chem. 15, 161 (1982), and references therein.Google Scholar
14. Fayfel', B.L., Realization of Quantumchemical Calculation Method for Electronic Zonal Structure of Polymers, Layered Systems and Crystals, M.S. Dissertation (Saratov Univ., Saratov, 1989), in Russian.Google Scholar
15. Fayfel', B.L. and Gribov, L.A., Zh. Strukt. Khim. 24 (3), 39 (1983).Google Scholar
16. Evarestov, R.A., Quantumchemical Methods in Solid State Theory (LGU, Leningrad, 1982).Google Scholar
17. Fayfel', B.L., Gribov, L.A., Dmitrienko, A.O., Bol'shakov, A.F., Kristallogr. 31 (5), 837843 (1986).Google Scholar