Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T05:45:02.820Z Has data issue: false hasContentIssue false

Modifications 7 And 8 Of Decagonal AI-Co-Ni

Published online by Cambridge University Press:  10 February 2011

S. Ritsch
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2–1-1, Aoba-ku, Sendai 980–8577, Japan, [email protected]
K. Hiraga
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2–1-1, Aoba-ku, Sendai 980–8577, Japan, [email protected]
C. Beeli
Affiliation:
Lab. for Solid State Physics, ETH Zürich, CH-8093 Z¨rich, Switzerland
T. Gödecke
Affiliation:
Max-Planck-Institute for Metal-Research, Seestr. 92, D-70174 Stuttgart, Germany
M. Scheffer
Affiliation:
Max-Planck-Institute for Metal-Research, Seestr. 92, D-70174 Stuttgart, Germany
R. Lück
Affiliation:
Max-Planck-Institute for Metal-Research, Seestr. 92, D-70174 Stuttgart, Germany
Get access

Abstract

Besides the six established decagonal states of the Al-Co-Ni quasicrystal two more modifications have been discovered by means of transmission electron microscopy. One is a pentagonal quasicrystal with a superstructure found in specimens with a very high Co-content and quenched from the highest possible temperature lying within the stability field of decagonal Al-Co-Ni. Its electron diffraction patterns are characterized by a 5-fold rotation axis as a unique symmetry element as well as superstructure reflections similar to those of a related decagonal phase. The other is a one-dimensional quasicrystal closely related to decagonal Al-Co-Ni. The modulation length of 61 Å along the periodic direction in its pseudo 10-fold diffraction patterns can be assumed to be caused by a strong linear, uniform, phason strain in the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ritsch, S., Beeli, C., Nissen, H. -U., Gödecke, T., Scheffer, M., and Lück, R., Phil. Mag. Lett. 78, p. 67 (1998).Google Scholar
2. Edagawa, K., Ichihara, M., Suzuki, K., and Takeuchi, S., Phil. Mag. Lett. 66, p. 19 (1992).Google Scholar
3. Ritsch, S., Beeli, C., Nissen, H. -U., and Lück, R., Phil. Mag. A 78, p. 671 (1995).Google Scholar
4. Ritsch, S., Beeli, C., Nissen, H. -U., Gödecke, T., Scheffer, M., and Lück, R., Phil. Mag. Lett. 74, p. 99 (1996).Google Scholar
5. Ritsch, S., Beeli, C., and Nissen, H. -U., Phil. Mag. Lett. 74, p. 203 (1996).Google Scholar
6. Lück, R., Scheffer, M., Gödecke, T., Ritsch, S., and Beeli, C., this volume.Google Scholar
7. Gödecke, T., Z. Metallkd. 88, p. 557 (1997).Google Scholar
8. Li, X. Z., Yu, R. C., Kuo, K. H., and Hiraga, K., Phil. Mag. Lett. 73, p. 255 (1996).Google Scholar
9. Niizeki, K., J. Phys. Soc. Jap. 63, p. 4035 (1994).Google Scholar
10. Joseph, D., Ritsch, S., and Beeli, C., Phys. Rev. B 55, 8175 (1997).Google Scholar
11. Socolar, J. E. S., Lubensky, T. C., and Steinhardt, P. J., Phys. Rev. B 34, p. 3345 (1986).Google Scholar
12. Lubensky, T. C., Socolar, J. E. S., Steinhardt, P. J., Bancel, P. A., and Heiney, P. A., Phys. Rev. Lett 57, p. 1440 (1986).Google Scholar
13. Edagawa, K., Suzuki, K., Ichihara, M., and Takeuchi, S., Phil. Mag. B 64, p. 629 (1991).Google Scholar
14. Kalning, M., Kek, S., Krane, H.G., Dorna, V., Press, W., and Steurer, W., Phys. Rev. B55, p. 187 (1997).Google Scholar