Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T05:01:11.923Z Has data issue: false hasContentIssue false

Modification of Semiconductor-Dielectric Interface in Organic Light-emitting Field-effect Transistors

Published online by Cambridge University Press:  31 January 2011

Yan Wang
Affiliation:
[email protected], Tohoku University, Physics department, Sendai, Japan
Ryotaro Kumashiro
Affiliation:
[email protected], Tohoku University, Physics department, Sendai, Japan
Naoya Komatsu
Affiliation:
[email protected], Tohoku University, Physics Department, Sendai, Japan
Katsumi Tanigaki
Affiliation:
[email protected], World Premier International Research Center, Sendai, Japan
Get access

Abstract

In this work, ambipolar rubrene single crystal field-effect transistors (FETs) with PMMA modification layer and Au/Ca as electrodes were fabricated. The electron mobility was studied in these devices. PMMA modification layer on the surface of SiO2 is necessary for electron behavior. We found that the device with PMMA modified insulator and Au-Ca asymmetric metals possessed hole mobility and electron mobility of 1.27 and 0.017 cm−2/Vs, respectively. Furthermore, the shift of light emitting with applied gate voltage was observed in this device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sirringhaus, H. Adv. Mater. 17, 2411 (2005).Google Scholar
2 D'Andrade, B. W., and Forrest, S. R. Adv. Mater. 16, 1585 (2004).Google Scholar
3 Chabinyc, M. L. and Salleo, A. Chem. Mater. 16, 4509 (2004).Google Scholar
4 Takenobu, T. Bisri, S. Z. Takahashi, T. Yahiro, M. Adachi, C., and Iwasa, Y. Phys. Rev. Lett. 100, 066601 (2008).Google Scholar
5 Chua, L. L. Zaumseil, J. Chang, J. Ou, E. C.-W., Ho, K.-H., Sirringhaus, H. and Friend, R. H., Nature, 434, 194 (2005).Google Scholar
6 Newman, C. R. Frisbie, C. D. Filho, D. A. da S. Bredas, J. Ewbank, P. C. and Mann, K. R. Chem. Mater. 16, 4436 (2004).Google Scholar
7 Menard, E. Podzorov, V. Hur, S.-H. Gaur, A. Gershenson, M. E. and Rogers, J. A. Adv. Mater. 16, 2097 (2004).Google Scholar
8 Reese, C. and Bao, Z. Materials Today, 10, 20 (2007).Google Scholar
9 Takeya, J. Goldmann, C. Haas, S. Pernstich, K. P. Ketterer, B. and Batlogg, B. J. Appl. Phys. 94, 5800 (2003).Google Scholar
10 Takeya, J. Nishikawa, T. Takenobu, T. Kobayashi, S. Iwasa, Y. Mitani, T. Goldmann, C. Krellner, C., Batlogg, B. Appl. Phys. Lett. 85, 5078 (2004).Google Scholar
11 Takenobu, T. Takahashi, T. Takeya, J. and Iwasa, Y. Appl. Phys. Lett. 90, 013507 (2007).Google Scholar
12 Bisri, S. Z. Takahashi, T. Takenobu, T. Yahiro, M. Adachi, C. and Iwasa, Y. Jpn. J. Appl. Phys. 46, L596 (2007).Google Scholar
13 Bisri, S. Z. Takenobua, T. Yomogidaa, Y. Yamaoc, T. Yahirod, M. Hottac, S. Adachid, C. and Iwasa, Y. Proc. of SPIE 6999, 69990Z (2008).Google Scholar