Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:35:29.961Z Has data issue: false hasContentIssue false

Modification of Electronic Transport in Polymer and Carbon Films by High and Low Energy Ion Irradiation

Published online by Cambridge University Press:  25 February 2011

T. Venkatesan
Affiliation:
Bell Communications Research, Inc., Murray Hill, NJ 07974
R. Levi
Affiliation:
California Institute of Technology, Pasadena, CA 91125
T. C. Banwell
Affiliation:
Bell Communications Research, Inc., Murray Hill, NJ 07974
T. Tombrello
Affiliation:
California Institute of Technology, Pasadena, CA 91125
M. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125
R. Hamm
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. E. Meixner
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

We have explored the origin of the ion-induced conductivity in polymer films and the distinction between low energy ion-implantation and high-energy ion irradiation. In experiments involving irradiation of polymer and carbon films with ions of energy from 200 keV to 25 MeV we have established that with both low and high energy ions the polymers undergo carbonization. However, the saturation resistivity obtained with low energy implantation is four to six orders of magnitude larger than those obtained by high energy ion irradiation. In experiments on irradiation of carbon films low energy ions caused a two orders of magnitude increase in the resistivity while high energy ion caused a two orders of magnitude decrease. This implies that the structure of the carbonized polymer is different for the low and the high energy ion irradiation. While in the former case there may be no crystalline order in the films; in the latter case, a microcrystalline graphitic structure is obtained (with four orders of magnitude larger conductivity than in the former case). The formation of graphitic crystalline order with increasing high energy ion dose was verified by electron energy loss spectroscopy. This is an interesting example of crystallization induced by electronic excitation alone with no macroscopic thermal effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Venkatesan, T., Proceedings cf the conference on the Ion Beam Modification of Materials, July, 1984. Cornell University, eds. Mayer, J. W. and Ulrich, B. M., North Holland, Amsterdam (1984).Google Scholar
2. Dresselhaus, M. S., Proceeding of MRS Society, Nov. 1983, Boston, Ion Implantation and Ion Beam Processing of Materials, eds. Hubler, G. K., Clayton, C. R., Holland, O. W. and White, C. W., North Holland, N.Y. 1984.Google Scholar
3. Hall, T. M., Wagner, A., and Thomspon, L. F., J. Vac. Sci. and Technol. 16, 1889 (1979).CrossRefGoogle Scholar
4. Brown, W. L., Venkatesan, T. and Wagner, A., Nuclear Instrum. and Meth. 191, 157 (1981).Google Scholar
5. Ryssel, H., Haberger, K. and Krantz, H., J. Vac. Sci. and Technol. 19, 1358 (1982).CrossRefGoogle Scholar
6. Venkatesan, T., Edelson, D. and Brown, W. L., Nuclear Instrum. and Meth. B1, 286 (1984).Google Scholar
7. Braun, M., Emmoth, B., Mladenov, G. M., and Satherblom, H. E., J. Vac. Sci. Technol. A1(3), 1383 (1983).CrossRefGoogle Scholar
8. Venkatesan, T., Wolf, T., Taylor, G. N., Allara, D. and Wilkens, B., Appl. Phys. Lett. 43, 934 (1983).Google Scholar
9. Mazurek, H., Day, D. K., Maby, E. W., Abel, J. S., Senturia, S. D., Dresselhaus, M. S. and Dresselhaus, G., J. Polymer Sci., Poly, Phys. Ed. 21, 537 (1983).Google Scholar
10. Abel, J. S., Mazurek, H., Day, D. R., Maby, E. W., Senturia, S.D., Dresselhaus, G. and Dresseihaus, M. S., Metastable Materials Formation by Ion Implantation, eds. Picraux, S. T. and Choyke, W. J. (Elsevior Science, New York, 1982).Google Scholar
11. Venkatesan, T., Forrest, S. R., Kaplan, M. L., Murray, C. A., Schmidt, P. H. and Wilkens, B. J., J. Appl. Phys. 54, 3150 (1983).CrossRefGoogle Scholar
12. Hioki, T., Noda, S., Sugiura, M., Kakeno, M., Yamanda, K. and Kawamoto, J., Appl. Phys. Leat. 43, 30 (1983).CrossRefGoogle Scholar
13. Kincaid, B. M., Meixner, A. E. and Platzman, P. M., Phys. Rev. Lett. 40, 1296 (1978).Google Scholar
14. Greenway, D. L., Harber, G., Bussani, F. and Tosatti, E., Phys. Rev. 178, 1340 (1969).Google Scholar
15. Hauser, J. J., Solid State Comm. 17, 1577 (1975).Google Scholar
16. Venkatesan, T., Dynes, R. C., Wilkens, B., White, A. E., Gibson, J. M., and Hamm, R., Nucl. Instrum. and Meth. B1, 599 (1984).Google Scholar
17. Zeigler, J. F. and Chu, W. K., At. Nucl. Data Tables, 13, 463 (1974).Google Scholar
18. Knotek, M. L. and Feibelman, Physics Today, p. 24, Sept. 1984.Google Scholar
19. Elman, B. S., Sandman, D. J., Tripathy, S. K. and Kennedy, E. F., J. Appl. Phys., to be published.Google Scholar
20. Hauser, J. J. and Patel, J. R., Solid State Comm. 18, 789 (1976).Google Scholar