Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T09:35:59.216Z Has data issue: false hasContentIssue false

Modification of a Carbon Electrode Surface by Cold Plasma Treatment for Electric Double Layer Capacitors

Published online by Cambridge University Press:  10 February 2011

Masashi Ishikawa
Affiliation:
Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, 2557 Tokiwadai, Ube 755, Japan
Atsushi Sakamoto
Affiliation:
Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, 2557 Tokiwadai, Ube 755, Japan
Masayuki Morita
Affiliation:
Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, 2557 Tokiwadai, Ube 755, Japan
Yoshiharu Matsuda
Affiliation:
Department of Applied Chemistry, Faculty of Engineering, Kansai University, 3–3–35 Yamate-cho, Suita 564, Japan
Koichi Ishida
Affiliation:
Industrial Technology Institute, Yamaguchi Prefectural Government, 585–1 Asada-Yugaki, Yamaguchi 753, Japan
Get access

Abstract

Activated carbon fiber cloth (ACFC) electrodes whose surface was modified by “pulsed cold plasma”, i.e., low-temperature plasma generated by a pulsed electric power in argon-oxygen mixed gas at a reduced pressure, were applied to electric double layer (EDL) capacitors with an organic electrolyte composed of propylene carbonate and tetraethylammonium tetrafluoroborate (TEABF4). The treatment of the ACFC electrodes with the pulsed cold plasma increased total capacitance in the EDL capacitors. The observed increase in the total capacitance was ascribed mainly to an ascertained increase in capacitance of a negative ACFC electrode involving TEA+ cation adsorption/desorption with the cold plasma treatment. No obvious increase in capacitance of a positive ACFC electrode involving BF4- anion adsorption/desorption was observed with the plasma treatment. The chemical and electrochemical characteristics of a treated ACFC interface were found to be favorable for TEA+ cation adsorption/desorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishino, A., Yoshida, A., Tanahashi, I., Tajima, I., Yamashita, M., Muranaka, T., Yoneda, H., National Technical Report, 31, 318 (1985).Google Scholar
2. Tanahashi, I., Yoshida, A., Nishino, A., Denki Kagaku, 56, 892 (1988).Google Scholar
3. Tanahashi, I., Yoshida, A., Nishino, A., J. Electrochem. Soc., 137, 3052 (1990).Google Scholar
4. Morimoto, T., Hiratsuka, K., Sanada, Y., Kurihara, K., J. Power Sources, 60, 239 (1996).Google Scholar
5. Rose, M. F., Johnson, C., Owens, T., Stephens, B., J. Power Sources., 47, 303 (1994).Google Scholar
6. Kibi, Y., Saito, T., Kurata, M., Tabuchi, J., Ochi, A., J. Power Sources., 60, 219 (1996).Google Scholar
7. Yata, S., Okamoto, E., Satake, H., Kubota, H., Fujii, M., Taguchi, T., Kinoshita, H., J. Power Sources., 60, 207 (1996).10.1016/S0378-7753(96)80012-7Google Scholar
8. Morita, M., Goto, M., Matsuda, Y., J. Appl. Electrochem., 22, 901 (1992).10.1007/BF01024137Google Scholar
9. Ishikawa, M., Morita, M., Ihara, M., Matsuda, Y., J. Electrochem. Soc., 141, 1730 (1994).Google Scholar
10. Ishikawa, M., Ihara, M., Morita, M., Matsuda, Y., Electrochim. Acta, 40, 2217 (1995).10.1016/0013-4686(95)00166-CGoogle Scholar
11. Ishikawa, M., Morita, M., Matsuda, Y. in Proceedings of the Symposium on Electrochemical Capacitors II, edited by Delnick, F.M., Ingersoll, D., Andrieu, X., Naoi, K. (The Electrochem. Soc. Inc., Pennington, 1997) Vol. 96–25, p. 325.Google Scholar
12. Ishikawa, M., Morita, M., Yamashita, S., Matsuda, Y., Progress in Batteries & Battery Materials, 13, 404 (1994).Google Scholar
13. Ishikawa, M., Sakamoto, A., Morita, M., Matsuda, Y., Ishida, K., J. Power Sources, 60, 233 (1996).10.1016/S0378-7753(96)80016-4Google Scholar
14. Momma, T., Liu, X., Osaka, T., Ushio, Y.. Sawada, Y., J. Power Sources, 60, 249 (1996).10.1016/S0378-7753(96)80018-8Google Scholar
15. Liu, X., Momma, T., Osaka, T., Denki Kagaku, 64, 143 (1996).Google Scholar
16. Proctor, A. and Sherwood, P.M.A., Carbon, 21, 53 (1983).Google Scholar
17. Fu, R., Zeng, H., Lu, Y., Carbon, 32, 593 (1994).Google Scholar
18. Kinoshita, K. and Bett, J.A.S., Carbon, 11, 403 (1973).Google Scholar
19. Wakida, T., Kawamura, H., Song, J., Goto, T., Takagishi, T., Sen'i Gakkaishi, 43, 384 (1987).Google Scholar
20. Jones, C. and Sammann, E., Carbon, 28, 509 (1990).Google Scholar
21. Jones, C. and Sammann, E., Carbon, 28, 515 (1990).10.1016/0008-6223(90)90047-3Google Scholar
22. Loh, I. H., Cohen, R. E., Baddour, R. F., J. Mater. Sci., 22, 2937 (1987).Google Scholar
23. Mujin, S., Baorong, H., Yisheng, W., Ying, T., Weiqin, H., Youxian, D., Compos. Sci. Tech., 34, 353 (1989).Google Scholar
24. Matsuda, Y., Nakashima, H., Morita, M., Takasu, Y., J. Electrochem. Soc., 128, 2552(1981).10.1149/1.2127289Google Scholar