Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T07:46:54.078Z Has data issue: false hasContentIssue false

Models of Long-Period Superstructures

Published online by Cambridge University Press:  21 February 2011

J. Kulik
Affiliation:
Lawrence Berkeley Laboratory, Materials and Molecular Research Division,University of California, Berkeley, California 94720, U.S.A.
D. de Fontaine
Affiliation:
Lawrence Berkeley Laboratory, Materials and Molecular Research Division,University of California, Berkeley, California 94720, U.S.A.
Get access

Abstract

The cause of the stability of long period superstructures is still something of a mystery. Typically, two very different models have been proposed: according to model I, the period of the superstructure (or modulation) is determined by lowering of the electronic energy resulting from the formation of a new Brillouin zone. According to model II, competing short-range interactions tend to produce long-period structures, the wavelength of which is determined by configurational entropy considerations. Model I is exemplified by the Sato and Toth theory, apparently applicable to long-period superstructures in Cu-Au, for example. Model II is exemplified by the Axial Next Nearest Neighbor Ising Model, for which a low-temperature free energy expansion has recently been given by Fisher and Selke. The latter model appears to apply to long-period superstructures in Ag3Mg.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, e.g., Modulated Structures - 1979 (Kailua Kona, Hawaii), AIP Conference Proceedings No. 53, edited by Cowley, J. M., Cohen, J. B., Salamon, M. B., and Wuensch, B. J. (AIP, New York, 1979).Google Scholar
2. Fujiwara, K., J. Phys. Soc. Japan 12, 7 (1957).Google Scholar
3. Jehanno, G. and Pério, P., J. Phys. 25, 966 (1964).Google Scholar
4. Portier, R., Gratias, D., Guymont, M., and Stobbs, W. M., Acta Cryst. A 36, 190 (1980).Google Scholar
5. Guymont, M., Gratias, D., and Portier, R. in Modulated Structures - 1979, op. cit., p. 244.Google Scholar
6. Guymont, M., Portier, R., and Gratias, D., Acta Cryst. A 36, 792 (1980).Google Scholar
7. Vanderschaeve, G., Revue Phys. Appl. 15, 711 (1980).Google Scholar
8. Sato, H. and Toth, R. S., Phys. Rev. 124, 1833 (1961).Google Scholar
9. Sato, H. and Toth, R. S., Phys. Rev. 127, 469 (1962).Google Scholar
10. Sato, H. and Toth, R. S. in Alloying Behavior and Effects in Concentrated Solid Solutions (Gordon and Breach, New York, 1965) p. 295.Google Scholar
11. Tachiki, M. and Teramoto, K., J. Phys. Chem. Solids 27, 335 (1966).Google Scholar
12. Tachiki, M. and Maekawa, S., J. Phys. Soc. Japan 28, 375 (1970).Google Scholar
13. Kubo, S. and Adachi, K., J. Phys. Soc. Japan 35 776 (1973).Google Scholar
14. Redner, S. and Stanley, H. E., Phys. Rev. B 16, 4901 (1977).Google Scholar
15. Selke, W. and Fisher, M. E., Phys. Rev. B 20, 257 (1979).Google Scholar
16. Bak, P. and von Boehm, J., Phys. Rev. B 21, 5297 (1980).Google Scholar
17. Villain, J. and Gordon, M. B., J. Phys. C 13, 3117 (1980).Google Scholar
18. Fisher, M. E. and Selke, W., Phys. Rev. Lett. 44, 1502 (1980), andGoogle Scholar
Phil. Trans. R. Soc. 302, 1 (1981).Google Scholar
19. Smith, J. and Yeomans, J. M., J. Phys. C 15, L1053 (1982);Google Scholar
Pokrovsky, V. L. and Uimin, G. V., J. Phys. C 15, L353 (1982).Google Scholar
20. Nakanishi, K., Technical Report of ISSP Ser. A., No. 1311, March 1983 (University of Tokyo, Tokyo, Japan).Google Scholar
21. Kulik, J. and de Fontaine, D., Lawrence Berkeley Laboratory Technical Report No. LBL-15519 (unpublished).Google Scholar
22. Kanamori, J. in Modulated Structures - 1979, op. cit., p. 117.Google Scholar
23. Sanchez, J. M and de Fontaine, D., Phys. Rev. B 25, 1759 (1982).Google Scholar
24. See, e.g., Kanamori, op. cit.Google Scholar
25. Van Tendeloo, G. and Amelinckx, S., Phys. Stat. Sol. A 43, 533 (1977).Google Scholar
26. Gangulee, A. and Moss, S. C., J. Appl. Cryst. 1, 61 (1968).Google Scholar
27. Teuho, J. and Makinen, K., Phys. Stat. Sol. A 70, K1 (1982).Google Scholar
28. Kuwano, N., Mishio, H., Toki, M., and Eguchi, T., Phys. Stat. Sol. A 65, 341 (1981).Google Scholar