Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T18:35:16.040Z Has data issue: false hasContentIssue false

Modelling the Activation of H2 on Spent Fuel Surface and Inhibiting Effect of UO2 Dissolution

Published online by Cambridge University Press:  23 January 2013

L. Duro
Affiliation:
Amphos 21 Consulting, S.L., P. Garcia Faria 49-51, 1-1, Barcelona, E-08019, Spain
O. Riba
Affiliation:
Amphos 21 Consulting, S.L., P. Garcia Faria 49-51, 1-1, Barcelona, E-08019, Spain
A. Martínez-Esparza
Affiliation:
ENRESA C/ Emilio Vargas, 7 Madrid, E-28043Spain.
J. Bruno
Affiliation:
Amphos 21 Consulting, S.L., P. Garcia Faria 49-51, 1-1, Barcelona, E-08019, Spain
Get access

Abstract

The dissolution of spent nuclear fuel is defined in two different time steps, i) the Instant Release Fraction (IRF) occurring shortly after water contacts the solid spent fuel and responsible of the fast release of those radionuclides that have been accumulated in the zones of the spent fuel pellet with low confinement, such as gap and grain boundaries and ii) the long term release of radionuclides confined in the spent fuel matrix, much slower and dependent on the conditions of the water that contacts the spent fuel.

Several models have been developed to date to explain the dissolution behavior of spent nuclear fuel under disposal conditions. The Matrix Alteration Model (MAM) is one of the most evolved radiolytic models describing the dissolution mechanism in which an Alteration/Dissolution source term model is based on the oxidative dissolution of spent fuel. Under deep repository conditions and at the expected of water contacting time (after 1000 years of spent fuel storage), α radiation will be the main contributor to water radiolysis. In the current study, simulations evaluating the effect of surface area on the alteration/dissolution of spent fuel matrix are performed considering different particle sizes of spent fuel and simulations integrating the actinides dissolution have been performed considering the precipitation of secondary phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(a) Martínez-Esparza, A., Cera, E. (eds.). Andriambololona, Z., Bruno, J., Cáceres, J., Cachoir, C., Carbol, P., Casas, I., Cavedon, J. M., Cera, E., Clarens, F., Cobos, J., de Pablo, J., Gago, J. A., Giménez, J., Glatz, J. P.., “Deliverable D13 (WP4), SFS Project (2004), contract n° FIKW-CT-2001–00192 .(b) A. Martínez Esparza, M. A. Cuñado, J. A Gago, J. Quiñones, E. Iglesias, J. Cobos, A. González de la Huebra, E. Cera, J. Merino, J. Bruno, J. de Pablo, I. Casas, F. Clarens, J. Giménez. ENRESA PT-01-2005.Google Scholar
Kelm, M., Bohnert, E.. “Deliverable D4”, SFS project (2004). FZKA 6977.Google Scholar
Schortmann, W. E., DeSesa, M.A.. “Kinetics of the dissolution of uranium dioxide in carbonate-bicarbonate solutions”. 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy, Geneve. Proceedings vol. 3, 333341(1958).Google Scholar
de Pablo, J, Casas, I., Giménez, J., Clarens, F., Duro, L., Bruno, J.. Mat. Res. Soc. Symp. Proc. 807, 8388 (2004).CrossRefGoogle Scholar
de Pablo, J, Casas, I., Clarens, F., Giménez, J., Rovira, M.. ENRESA PT-01–2003.Google Scholar
Ekeroth, E., Jonsson, M.. J. Nucl. Mat., 322, 242248 (2003).CrossRefGoogle Scholar
de Pablo, J, Casas, I., Giménez, J., Molera, M., Rovira, M., Duro, L., Bruno, J.. Geochim. Cosmochim. Acta 63, 30973103 (1999).CrossRefGoogle Scholar
Merino, J., Cera, E., Bruno, J., Quiñones, J., Casas, I., Clarens, F., Giménez, J., de Pablo, J., Rovira, M., Martínez-Esparza, A.. J. Nucl. Mater., 346, 4047 (2005).CrossRefGoogle Scholar
Duro, L., Tamayo, A., Bruno, J., Martinez-Esparza, A.. Integration of the H2 Inhibition effect of UO2 Matrix Dissolution Into Radiolytic Models. Proceedings of the 12th International Conference on Environmental Remediation and Radioactive Waste Management October 1115, 2009, Liverpool. ICEM-2009–16239.CrossRefGoogle Scholar
Bruno, J., Casas, I., Puigdomènech, I.. Geochim. Cosmochim. Acta 55, 647658 (1991).CrossRefGoogle Scholar
Clarens, F., de Pablo, J., Casas, I., Giménez, J., Rovira, M.. Mat. Res. Soc. Symp. Proc., Vol 807, 7176 (2003)CrossRefGoogle Scholar
Guillaumont, R., Fanghänel, J., Neck, V., Fuger, J., Palmer, D.A., Grenthe, I., Rand, M.H.. “Chemical Thermodynamics 5. Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium”. NEA OECD, Elsevier (2003).Google Scholar
Trummer, M., Nilsson, S., Jonsson, M.. J. Nucl. Mater., 378, 55 (2008).CrossRefGoogle Scholar
Broczkowski, M.E., Noël, J.J., Shoesmith, D.W., J. Nucl. Mater., 346, 1623(2005).CrossRefGoogle Scholar
Giménez, J., Casas, I., Sureda, R., de Pablo, J.. Radiochim. Acta 100, 14(2012).CrossRefGoogle Scholar
SCALE: A Modulas Code System for Performing Standardized Computer Analyses for Licensing Evaluation (2009). OAK Ridge National Laboratory.Google Scholar
Poulesquen, A., Jégou, C., Peuget, S., Mat. Res. Soc. Symp. Proc., 932 (2006).CrossRefGoogle Scholar
Kirkegaard, P., Bjergbakke, E., CHEMSIMUL: A simulator for chemical kinetics. Risø-R-1085(EN). http://www.risoe.dk/ita/chemsimul (2002)Google Scholar
Håkansson, R. (1999). SKB Technical Report, R-99–74.Google Scholar
Parkhurst, D.L., Appelo, C.A.J PHREEQC v. 2.17.5: User’s guide to Phreeqc (version 2) - A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99–4259 (1999).Google Scholar
Martínez-Esparza, A., Clarens, F., Gonzalez-Robles, E., Giménez, F.J., Casas, I., De Pablo, J., Serrano, D., Wegen, D., Glatz, J.P.. ENRESA PT- 04–2009 Google Scholar
González-Robles, E. Corrales (2011). Study of radionuclide release in commercial UO2 spent nuclear fuels. Effect of burn-up and high burn-up structure. Ph. D. Thesis, UPC.Google Scholar