Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:50:55.090Z Has data issue: false hasContentIssue false

Modelling Quasicrystal Plastic Deformation By Means of Constitutive Equations

Published online by Cambridge University Press:  17 March 2011

M. Feuerbacher
Affiliation:
Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
P. Schall
Affiliation:
Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Y. Estrin
Affiliation:
IWW, TU Clausthal, 38678 Clausthal-Zellerfeld, Germany
Y. Bréchet
Affiliation:
LTPCM, 38402 St. Martin d' Heres, France
K. Urban
Affiliation:
Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Get access

Abstract

The interpretation of plastic deformation experiments on quasicrystals is a challenging task due to the occurrence of changes of the structure during deformation. In this paper, we present a quantitative model for quasicrystal plasticity on the basis of a constitutive-equations Ansatz, which takes these effects into account. A single-internal-variable model of the kind commonly used for describing crystal plasticity, is adapted for the description of the dislocation density evolution in a quasicrystal. In addition, we introduce a structural parameter that accounts for the evolution of order in the course of plastic deformation. The numerical solution of the resulting set of evolution equations yields the flow stress and the dislocation density as a function of strain, which can be directly compared to corresponding experimental curves obtained on icosahedral Al-Pd-Mn. An excellent agreement between experiment and the calculated curves obtained using our model is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, R., Feuerbacher, M., Yang, W., and Urban, K., Phil. Mag. A, 78, 273 (1998).Google Scholar
2. Franz, V., Feuerbacher, M., Wollgarten, M., and Urban, K., Phil. Mag. Lett. 79, 333 (1999).Google Scholar
3. Mikulla, R., Roth, J., and Trebin, H.R., Phil. Mag. B 71, 981 (1995).Google Scholar
4. Fisher, J.C., Acta Met. 2, 9 (1954).Google Scholar
5. Feuerbacher, M., Metzmacher, C., Wollgarten, M., Baufeld, B., Bartsch, M., Messerschmidt, U., and Urban, K., Mat. Sci. Eng. A 233, 103 (1997).Google Scholar
6. Messerschmidt, U., Bartsch, M., Geyer, B., Feuerbacher, M., and Urban, K., Phil. Mag. A, 80, 1165 (2000).Google Scholar
7. Evans, A.G. and Rawlings, R.D, Phys. Stat. Sol. 34, 9 (1969).Google Scholar
8. Kocks, U.M. and Mecking, H., Dislocation Modelling of Physical Systems, ed. Ashby, M.F., Bullough, R., Hartley, C.S., and Hirsch, J.P. (Pergamon Press,1980) p. 173.Google Scholar
9. Estrin, Y., Unified Constitutive Laws of Plastic Deformation, ed. Krausz, A. and Krausz, K., (Academic Press, 1996), p.69.Google Scholar
10. Kocks, U.M., J. Eng. Mater. Technol. 98, 76 (1976).Google Scholar
11. Feuerbacher, M., Schall, P., Estrin, Y. and Bréchet, Y., Phil. Mag. Lett., submitted (2000).Google Scholar
12. Sevillano, J. Gil, Materials Science and Technology 6, ed. Cahn, R.W., Haasen, P. and Kramer, E.J. (VCH, 1993), p. 21.Google Scholar
13. Schall, P., Feuerbacher, M., Bartsch, M., Messerschmidt, U., and Urban, K., Phil. Mag. Lett. 79, 785 (1999).Google Scholar
14. Guyot, P. and Canova, G., Phil. Mag. A 79, 2815 (1999).Google Scholar
15. Bréchet, Y., Canova, G., and Kubin, L.P., Scripta Met. 29, 1165 (1993).Google Scholar
16. Giacometti, E., Guyot, P., Baluc, N., and Bonneville, J., Proc. ICSMA 12 (2000) (in press).Google Scholar
17. Estrin, Y. and Kubin, L.P., Acta Met. 34, 2455 (1986).Google Scholar