Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:27:34.929Z Has data issue: false hasContentIssue false

Modelling Electromigration and Induced Stresses In Aluminum Lines

Published online by Cambridge University Press:  21 February 2011

R. Kirchheim*
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-7000 Stuttgart-1, Germany
Get access

Abstract

The various equations used by different authors for describing electromigration are compiled. All of them can be derived from a general equation which is based on a vacancy model. During the derivation of simplified versions of the general equations assumptions have to be made and their effect on concentration profiles and/or electromigration stresses developing as a function of time are discussed. Consequences with respect to Blech's experiment or the current exponent in Black's equation are taken into consideration and a simple explanation is provided for the beneficial effect of a (111) texture on the reliability of Al-lines.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kirchheim, R., Acta metall. mater. 40, 309 (1992)Google Scholar
2. deGroot, S.R. and Mazur, P., Non-Equilibrium Thermodynamics, 3rd ed. (North Holland Publishing Company, Amsterdam, London, 1969)Google Scholar
3. Huntington, H.B. and Grone, A.R., J. Phys. Chem. Solids 20, 76 (1960)CrossRefGoogle Scholar
4. Martin, G., Blackburn, D.A. and Adda, Y., Phys. Stat. Solidi 23, 223 (1967)Google Scholar
5. Philibert, J., Atom Movement. Diffusion and Mass Transport in Solids (Les Editions de Physique, Paris, 1991)Google Scholar
6. Kirchheim, R., Phys. Stat. Solidi (b) 91, 123 (1979)Google Scholar
7. Rosenberg, R. and Ohring, M., J. Appl. Phys. 42, 5671 (1971)CrossRefGoogle Scholar
8. Shatzkes, M. and Lloyd, J.R., J. Appl. Phys. 59, 3890 (1985)Google Scholar
9. Nix, W.D. and Arzt, E., Metall. Trans. A 23A, 2007 (1992)Google Scholar
10. Brotzen, F.R., Rosenmayer, C.T., Dunn, C.F. and McPherson, J.W., Mat. Res. Soc. Symp. Proc. 239, 689 (1992)Google Scholar
11. Blech, I.A., J. Appl. Phys. 47, 1203 (1976)CrossRefGoogle Scholar
12. Ross, C.A. and Evetts, J.E., Scripta metall. 21, 1077 (1987)Google Scholar
13. Korhonen, M.H., Borgesen, P. and Li, C.Y., Mat. Res. Soc. Symp. Proc. 239, 695 (1992)Google Scholar
14. Kirchheim, R. and Kaeber, U., J. Appl. Phys. 70, 172 (1991)Google Scholar
15. Lloyd, J.R. and Kitchin, J., these proceedingsGoogle Scholar
16. Børgesen, P., Korhonen, M.H., Brown, D.D. and Li, C.-Y., in Stress-Induced Phenomena in Metallization, edited by Li, C.-Y. et al. (AlP Conf. Proc. 263, 1992) pp. 219235 Google Scholar
17. 18. Hemmert, R.S. and Costa, M., IEEE Proc. Int. Reliab. Phys. Symp. (1991) 64 Google Scholar
18. Hehenkamp, Th., Proc. of Int. Conf. on Diffusion in Materials (DIMAT 92), Kyoto, Japan, 7.- 11.9.92, to be publishedGoogle Scholar
19. Kirchheim, R., unpublished resultsGoogle Scholar
20. Black, J.R., IEEE Proceedings, Int. Reliab. Symp. (1967) 148 Google Scholar
21. Kirchheim, R., Proc. of 3rd European Symp. on Reliability of Electron Devices, Failure Physics and Analysis, vde-verlag GmbH, Berlin (1992), p. 179 Google Scholar
22. Makhviladze, T.M., ME. Sarychev and K.A.Valiev, Proc. 6th Int. Nesecode Conf. (1989) 521 Google Scholar
23. Hoffman, R.E., Acta metall. 4, 97 (1956)CrossRefGoogle Scholar
24. Sommer, J., Herzig, C., Mayer, S. and Gust, W., Defect and Diffusion Forum 66, 843 (1989)Google Scholar
25. Pond, R.C. and Vitek, V., Proc. R. Soc. Lond. B357, 453 (1977)Google Scholar
26. Turnbull, D. and Hoffman, R.Z., Acta metall. 2, 419 (1954)Google Scholar
27. Kaeber, U., Thesis, University of Stuttgart, Germany (1992)Google Scholar
28. Vaidya, S. and Sinha, A.K., Thin Solid Films 75, 253 (1981)Google Scholar